Numerical integration of differential equations applied
to a damped harmonic oscillator

Meirin Evans

9214122

School of Physics and Astronomy
The University of Manchester

Second Year Laboratory Report

Apr 2016

Abstract

Through the application of five different numerical integration methods (Euler, improved
Euler, Verlet, Euler-Cromer and RK4) to an analytically solvable damped harmonic oscil-
lator, the RK4 method was found to be closest to the analytic solution. The RK4 method
could then be implemented to approximate non-solvable situations such as a sudden force
application part-way through a cycle.

1. Introduction

A damped harmonic oscillator, such as a mass, m, moving horizontally on a spring with
constant &, follows Equation 1;

ma+bv+hkx=F (1)

where x is displacement from equilibrium, v is velocity, a is acceleration, b is a
damping term and F is a forcing term. This can only be solved in situations where F'=0,
which is unforced, or is forced but has a specific form, like a sinusoid. For simple har-
monic motion with =0 and =0 «a is given by

a= —mozx (2)

3

where wo is the object’s natural frequency, which is
o=k ®
m .

2. Theory
The solution for Equation 1 with F=0 is

x(t) = Ae;’”t 51n(t1f£—(—) +0) 4)

where ¢ is the time since releasing m, 4 is the initial amplitude and ¢ is an initial phase.
Differentiating Equation 4 gives

v(t) = Ae;'”(Sln(l,/—-(—) ¢)+,/—-(—) (l\/—-(—) ¢)) ©)

A in Equations 4 and 5 is

;. Jx(t =0)* +v(1 = 0)°

. k
sin’¢ + —cos’ ¢
m

(6)

whilst ¢ is

— tan (X (7)
¢ (_O)f>

The total energy, £, of a damped harmonic oscillator (kinetic plus potential energy) is

1 1
E =Ekx2 +§mv2 (8)

When b has a value of
b =2mk ©)

m returns to the equilibrium position in the shortest time without oscillation, called critical
damping.

When a sinusoidal force, Fosinw?, with @ similar to wo drives a damped harmonic oscilla-
tor it reaches steady state oscillations after an initial transient period has passed. Steady
state means constant amplitude oscillations. Applying this type of force allows investiga-
tion of resonance. A as a function of w is

Alw) = £y

(10)

2

m\/(k—(x)z)2 +’ b—z
m m’

The peak of a resonance curve occurs at w slightly less than wo [1]. The smaller b the
closer the peak is to wo.

3. Analytical method

In a MATLAB script five numerical integration methods (Euler, improved Euler, Verlet,
Euler-Cromer and RK4) were compared with the analytic solution for the case
m=1.79kg, k=3.79 Nm'!, b=0.1 Nsm'!, x(=0) = 0 m, v(t=0) = -1 ms™! [2]. To achieve
this x(2) and E(?) were plotted using Equation 8 for all methods. Equations 2, 3, 6 and 7
were used for the analytic method. The method with the smallest energy residuals relative
to the analytic method was taken as the best approximation. This method was then ap-
plied to investigate critical damping through Equation 9, steady state oscillations with a
sinusoidal driving force, and also application of sudden forces at different points in a cy-
cle. Resonance was studied through Equation 10 using the analytic method.

The damping term and time step used in Equations 4 and 5 were chosen to best illustrate
the differences between different methods.

4. Results

As described in the Analytical method, plots of x(?) and E(z) are shown in Figures 1 and 2
respectively.

08 T T T T T T T Euler
improved Euler
Verlet

0.6 Euler-Cromer
analytic
RK4

04 r -

/

0.2 \ .
E ot ’ .
x \\ |

\\ V

0.2

f’j

-04r

-0.6 T

'08 | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10

Fig 1. Oscillator displacement in m against time since release in s for Euler, improved Euler, Verlet,
Euler-Cromer, RK4 and analytic methods. The Verlet (yellow), Euler-Cromer (purple) and analytic
(green) plots cannot be seen since they are very close to the RK4 (cyan) plot.

To avoid confusion with the decrease of energy with time, the residuals for Figure 2 rela-
tive to the analytic solution are shown in Figure 3. Justification for the chosen time step
of 0.01s is shown in Figure 4. Euler’s method was chosen to illustrate this as the least
accurate method. A larger time step shows Euler’s method adding energy to the system
and a smaller time step deviates more from the equilibrium position (also adding artificial
energy to the system). Another way to compare methods is to plot the oscillator’s phase
space, shown in Figure 5, which is simply x against v. The analytic solution’s phase space
is an ellipse with decreasing semi-minor and major axes. Figure 6 displays critical damp-
ing, with the critically damped oscillator returning to the equilibrium position after about
6s. The oscillator with half-critical damping completes at least one oscillation whereas
the oscillator with double-critical damping does not return to equilibrium. A driving fre-
quency of m = 1.5 s'! in Figure 7 shows that it takes time for forced oscillations to reach
steady state, as there is not much difference between the forced and unforced cases to be-
gin with. Thereafter the forced case shows the amplitude increasing until reaching steady
state.

0.9 I I — l;" — 77”1"”‘” '7l"”77 I I I

Euler
improved Euler
AN Verlet
0.85- N Euler-Cromer | 7
analytic
RK4
0.8}
0.75 |-
>
3 0.7}
()
c
L
0.65 |-
0.6 -
0.55 |
05 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

t(s)
Fig 2. Oscillator energy in J against time since release in s for Euler, improved Euler, Verlet, Euler-
Cromer, RK4 and analytic methods. As for Figure 1, the Verlet (yellow), Euler-Cromer (purple) and RK4
(cyan) plots are close together so are not seen separately.

0.14 T — T T T - T T T T
Euler
improved Euler |_-|
Verlet
012 Euler-Cromer | 7
RK4
0.1}
0.08 -
= 0.06 |-
L
0.04 -
0.02 -
0
-0.02 I]]]]] I I I
0 1 2 3 4 5 6 7 8 9 10

t(s)
Fig 3. Residuals of oscillator energy in J from Figure 2 for Euler, improved Euler, Verlet, Euler-Cromer
and RK4 relative to the analytic solution. As for Figures 1 and 2 the Verlet (yellow), Euler-Cromer
(purple) and RK4 (cyan) plots cannot be distinguished since they are close.

5

0.002
0.01
0.05

12 -

10 -

x (m)

0 L L : sss—— i i ! I

0 1 2 3 - 5 6 7 8 9 10
t(s)

Fig 4. Oscillator displacement in m against time since release in s as Figure 1 but for Euler method only

with various time steps.

1 T |
Euler
0.8 improved Euler | _|
Verlet
Euler-Cromer
0.6 analytic 7
RK4
04 r _
0.2r _
g or i
>
0.2 _
04 _
06 i
-0.8 _
_1 1 1
-1 -0.8 0.8 1

Fig 5. Phase space plots (oscillator displacement in m against velocity in ms™! for Euler, improved Euler,
Verlet, Euler-Cromer, RK4 and analytic methods. As for Figures 1, 2 and 3 the Verlet (yellow), Euler-
Cromer (purple), analytic (green) and RK4 (cyan) plots are close so are mostly seen as one.

6

half critical
critical
double critical

0.05

0.4] ! ! 1]]] ! ! I
0 1 2 3 4 5 6 7 8 9 10

t(s)
Fig 6. Plot of oscillator displacement in m against time since release in s with critical, half-critical and
double-critical damping for the RK4 method. x = 0 is the equilibrium position.
0.8 ——T o - = T —

forced
unforced

0.6

0.4 H

0.2

0.8 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

t(s)

Fig 7. Oscillator displacement in m against time since release in s for forced (blue) and unforced (red)
oscillations using the RK4 method. The plots are close together until about 20s (transient period). Steady
state oscillations are seen after about 140s, by this time the unforced oscillations have almost died away.

7

0.8

Figure 8 shows the effect of a sudden force application during oscillation. In all Figure 8
subplots a constant force of 1N was applied after the times where two plots are distin-
guishable. These cases have no analytic solution therefore can only be investigated using

numerical integration.

same direction as initial velocity ir
opposite direction to initial velocity

0.8

-0.8

same direction as initial velocity
opposite direction to initial velocity
1

1 1 1 1 1 1

1 1 I

same direction as initial velocity 1
opposite direction to initial velocity

3 4 5 6 7
t(s)

S

same direction as initial velocity
opposite direction to initial velocity

8 9 10

Fig 8. Oscillator displacement in m against time since release in s with application of a sudden (then
continued) force at different parts throughout an oscillation cycle using the RK4 method. Top left shows
application at a peak, top right at a trough, bottom left for application when x = 0 m and v < 0 ms’,
bottom right for x = 0 m and v > 0 ms™!. Blue curves are for a force direction being the same as v(1=0)

whilst red are for a force oppositely directed from v(z=0).

Figure 9 shows resonance curves for oscillators of different natural frequency. k/m in
Equation 10 is replaced with k&/m + 0.12 - 0.2(k/m)%> for the red curve and k/m + 0.12 +
0.2(k/m)"> for the yellow curve. Figure 9 shows the curves moving to lower frequency
and the peak height increasing for lower natural frequency.

0.8 >~ ~ . - . .

VvV k/m
k/m - 0.1
VE/m + 0.1
-1

max at 1.5794 ™'

Fig 9. Resonance curves (oscillator amplitude in m against angular frequency in s') for various natural
frequencies. The vertical lines label the natural frequency of that curve and the maxima of each curve are
labelled. The lines look as if they are pointing to the maxima but they are actually slightly separated (by
too small a distance to be seen).

5. Discussion

Running the simulation from Figure 5 for an infinite time would show the analytic solu-
tion’s phase space spiralling towards the origin. Equally, an infinite time in Figure 6
would show the oscillator with double critical damping not returning to equilibrium.
Study of Figure 7 shows that peaks for forced and unforced oscillations do not align after
the transient period, which is expected as the forced oscillator oscillates at w in steady
state. Figure 9 suggests the natural frequencies are the same as the peak frequencies,
which would contradict the discussion in the Theory. However, they have differences of
(5.4+0.6) x 104s1, (5.1 £0.6) x 10*s'and (4.8 = 0.6) x 10*s! respectively for the red,
blue and yellow curves. These error values were obtained from dividing the range in w by
the number of values in the w array. This shows that the value of b used was relatively
small and corresponded to light damping.

Figures 1, 2, 3 and 5 confirm that the Verlet and Euler-Cromer methods are good approx-
imations, but RK4 is better. Using Figure 3, Verlet’s method’s maximum deviation from
the analytic solution was (0.80 = 0.23) % whilst it was (0.75 £ 0.23) % for Euler-
Cromer’s method and (0.03564158 £+ 0.00000003) % for RK4, which is why RK4 was
used in Figures 6-9. These errors were obtained using the MATLAB std function on the
deviation arrays.

6. Summary

It was found that five different numerical integration methods could be ranked according
to increasing ability in replicating the analytic solution to a damped harmonic oscillator.
The order was Euler, improved Euler, Verlet, Euler-Cromer then RK4.

References

[1] King, G., Vibrations and Waves, Wiley, First Edition, 2009, page 56.
[2] MATLAB, Version 5, The Math Works Inc, Natick, Mass 01760.

The number of words in this document is 1531.

This document was last saved on 25/4/2016 at 16:55.

10

Appendix

clear;
close all;

prompt ="'Use m = 1.79 kg, k = 3.92 N per m, b = 0.1 Ns per m, x(t=0) = 0 m, v(t=0) =
-1 m per s? (y/n)

input(prompt, 's') =="n'

prompt = 'Please enter m in kg ';

m = input(prompt);

prompt = 'Please enter k in N per m °;
k = input(prompt);

prompt = 'Please enter b in Ns per m ';
b = input(prompt);

prompt = 'Please enter x(t=0) in m °;
xinitial = input(prompt);

prompt = 'Please enter v(t=0) in m per s ‘;
vinitial = input(prompt);

m = 1.79;
k =3.92;
b=0.1;

xinitial = 0;
vinitial = -1;

h=0.01;

simtime = 10;
steps = simtime/h;
t = 0:h:simtime;

t = t(1:length(t)-2);

11

[x1, vl, E1] = doEuler(xinitial, vinitial, m, k, b, zeros(size(t)), h, steps);

[x2, v2, E2] = improvedEuler(xinitial, vinitial, m, k, b, zeros(size(t)), h, steps);
[x3, v3, E3] = Verlet(xinitial, vinitial, x2, v2, m, k, b, zeros(size(t)), h, steps);
[x4, v4, E4] = EulerCromer(xinitial, vinitial, m, k, b, zeros(size(t)), h, steps);

[x5, v5, ES] = analytic(xinitial, vinitial, t, m, k, b, steps);
[x6, v6, E6] = RK4(xinitial, vinitial, t, m, k, b, zeros(size(t)), h, steps);

figl = figure;

plot(t, x1); grid

xlabel('t (s)’, ‘FontSize’, 12);
ylabel('x (m)', ‘FontSize’, 12);
set(gca, ‘FontSize’, 12);

hold on;

plot(t, x2);

plot(t, x3);

plot(t, x4);

plot(t, x5);

plot(t, x6);

g = legend(‘Euler', 'improved Euler', 'Verlet', 'Euler-Cromer’', ‘analytic’, ‘RK4°);

set(g, ‘FontSize’, 10);

g.Position = [0.82, 0.81, 0.05, 0.05];

hold off;

print('Figl method comparison', '-depsc');
fig2 = figure;

plot(t, E1-ES); grid

xlabel('t (s)', ‘FontSize’, 12);

ylabel('E (J)', ‘FontSize’, 12);

set(gca, ‘FontSize’, 12);

hold on;

plot(t, E2-ES);

plot(t, E3-ES);

plot(t, E4-ES);

plot(t, E6-ES);

g =legend('Euler’, 'improved Euler', 'Verlet', ‘Euler-Cromer’, ‘RK4’);
set(g, ‘FontSize’, 10);

12

hold off;
print('Fig2 method energy residuals’, '-depsc');

[x7, v7, E7] = doEuler(xinitial, vinitial, m, k, b, zeros(size(t)), h/5, steps);
[x8, v8, E8] = doEuler(xinitial, vinitial, m, k, b, zeros(size(t)), h*5, steps);

fig3 = figure;

xlabel('t (s)', ‘FontSize’, 12);

ylabel('x (m)', ‘FontSize’, 12);

set(gca, ‘FontSize’, 12);

hold on;

plot(t, E7-ES); grid

plot(t, E1-ES);

plot(t, ES-ES);

g = legend(num2str(h/5), num2str(h), num2str(h*5));
set(g, ‘FontSize’, 10);

hold off;

print('Fig3 step size comparison', '-depsc');

fid = fopen('displacement.txt', ‘w');
exisw = exist('displacement.txt');
a = 1:length(x1);
fprintf(fid, ‘% 17.150\t%17.150\t%17.150\t%17.150\t%17.151%17.15f\n’, [x1(a),
x2(a), x3(a), x4(a), x5(a), x6(a)]’);

fclose(fid);
exisr = exist('displacement.txt');

j = 1:length(E4);
accuracyEC(j) = (E4(j)-E5())/E5(j);
accuracyV(j) = (E3()-E5())/E5(j);
accuracyRK(j) = (E6()-E5())/ES(j);

minaccuracyEC = max(abs(accuracyEC));

minaccuracyV = max(abs(accuracyV));
minaccuracyRK = max(abs(accuracyRK));

13

sigmaminaccuracyEC = std(abs(accuracyEC));
sigmaminaccuracyV = std(abs(accuracyV));
sigmaminaccuracyRK = std(abs(accuracyRK));

fid = fopen('displacement.txt', ‘r');
array = fscanf(fid, '%f", [6, inf]);
fclose(fid);

x1dat = array(1, :);

x2dat = array(2, :);

x3dat = array(3, :);

x4dat = array(4, :);

xSdat = array(5, :);

x6dat = array(6, :);

fig4 = figure;

plot(x1dat, v1); grid

xlabel('x (m)', ‘FontSize’, 12);
ylabel('v (ms”*-"1)', ‘FontSize’, 12);
set(gca, ‘FontSize’, 12);
xlim([-abs(vinitial) abs(vinitial)];
hold on;

plot(x2dat, v2);

plot(x3dat, v3);

plot(x4dat, v4);

plot(x5dat, v5);

plot(x6dat, v6);

g =legend('Euler’, 'improved Euler', 'Verlet', 'Euler-Cromer', ‘analytic’, ‘RK4’);

set(g, ‘FontSize’, 10);
hold off;
print('Fig4 phase space’', '-depsc');

fig5 = figure;

plot(t, E1); grid

xlabel('t (s)', ‘FontSize’, 12);
ylabel('Energy (J)', ‘FontSize’, 12);
set(gca, ‘FontSize’, 12);

hold on;

plot(t, E2);

plot(t, E3);

14

plot(t, E4);
plot(t, ES);
plot(t, E6);
g =legend('Euler', 'improved Euler', 'Verlet', 'Euler-Cromer’, ‘analytic’, ‘RK4°);

hold off;
print('Fig5 energy', ‘-depsc');

disp(‘RK4 method is best”);

[x9] = RK4(xinitial, vinitial, t,m, k, sqrt(k*m), zeros(size(t)), h, steps);
[x10] = RK4(xinitial, vinitial, t, m, k, 2*sqrt(k*m), zeros(size(t)), h, steps);
[x11] = RK4(xinitial, vinitial, t, m, k, 4*sqrt(k*m), zeros(size(t)), h, steps);

fig6 = figure;

xlabel('t (s)', ‘FontSize’, 12);
ylabel('x (m)', ‘FontSize’, 12);
set(gca, ‘FontSize’, 12);

hold on;

plot(t, x9); grid

plot(t, x10);

plot(t, x11);

g = legend('half critical', 'critical', 'double critical’);
set(g, ‘FontSize’, 10);

hold off;

print('Fig6b damping term’', '-depsc');

simtime2 = simtime*20;

steps2 = simtime2/h;

t2 = 0:h:simtime2;

t2 = t2(1:length(t2)-2);

FO0=0.1;

[x12] = RK4(xinitial, vinitial, t2, m, k, b, F0*sin(1.5*t2), h, steps2);

[x13] = RK4(xinitial, vinitial, t2, m, k, b, zeros(size(t2)), h, steps2);

fig7 = figure;
xlabel('t (s)', ‘FontSize’, 12);

15

ylabel('x (m)', ‘FontSize’, 12);
set(gca, ‘FontSize’, 12);

hold on;

plot(t2, x12); grid

plot(t2, x13);

g = legend('forced’, ‘unforced");
set(g, ‘FontSize’, 10);

hold off;

print('Fig7 driving force', '-depsc');

omega = linspace(sqrt(k/m)-0.3, sqrt(k/m)+0.3, 10000);
A = F0./(m*sqrt((k/m - omega.”2).”2 + (omega.”2)*(b/m)"2));

Alow = F0./(m*sqrt((k/m + 0.1*2 -0.2*sqrt(k/m) - omega.”2).*2 + (omega.”2)*(b/
m)"2));

Ahigh = F0./(m*sqrt((k/m + 0.1*2 +0.2*sqrt(k/m) - omega.”2)."2 + (omega.”2)*(b/
m)"2));

fig8 = figure;

xlabel("\omega (s”-"1)', ‘FontSize’, 12);

ylabel('A (m)', ‘FontSize’, 12);

set(gca, ‘FontSize’, 12);

xlim([min(omega) max(omega)));

hold on;

plot(omega, A); grid

plot(omega, Alow);

plot(omega, Ahigh);

g = legend('$$\sqrt{k/m}$$', '$$\sqrt{k/m}$$ - 0.1', '$$\sqrt{k/m}$$ + 0.1°);

set(g, 'Interpreter’, ‘latex’, ‘FontSize’, 12);

[maxA, maxw]| = findpeaks(A, omega);

[maxAlow, maxwlow]| = findpeaks(Alow, omega);

[maxAhigh, maxwhigh]| = findpeaks(Ahigh, omega);

maxwstr = num2str(maxw);

maxwlowstr = num2str(maxwlow);

maxwhighstr = num2str(maxwhigh);

text(maxw, maxA, sprintf('max at %s s”-"1', maxwstr), ‘FontSize’, 11);

text(maxwlow, maxAlow, sprintf('max at %s s”-"1', maxwlowstr), ‘FontSize’, 11);
text(maxwhigh, maxAhigh, sprintf('max at %s s”*-"1', maxwhighstr), ‘FontSize’,

11);
line([sqrt(k/m) sqrt(k/m)], [0 FO/(b*sqrt(k/m))], 'LineStyle’, --');

16

line([sqrt(k/m)-0.1 sqrt(k/m)-0.1], [0 FO/(b*sqrt(k/m + 0.1"*2 -0.2*sqrt(k/m)))],
'LineStyle', '--', 'Color’, 'r');
line([sqrt(k/m)+0.1 sqrt(k/m)+0.1], [0 FO/(b*sqrt(k/m + 0.1*2 +0.2*sqrt(k/m)))],
'LineStyle', '--', 'Color', 'y');
text(sqrt(k/m), maxA/2, '$$\sqrt{k/m}$$', 'Interpreter’, 'latex', 'Color', ‘b’, ‘Font
Size’, 11);
text(sqrt(k/m)-0.1, maxAlow/2, '$$\sqrt{k/m}$$ - 0.1', 'Interpreter', 'latex’, 'Color’,
'r', ‘FontSize’, 11);
text(sqrt(k/m)+0.1, maxAhigh/2, '$$\sqrt{k/m}$$ + 0.1', 'Interpreter', 'latex’, 'Color’,
‘y', ‘FontSize’, 11);
hold off;
deltaomega = sqrt(k/m) - maxw;
deltaomegalow = sqrt(k/m) - 0.1 - maxwlow;

deltaomegahigh = sqrt(k/m) + 0.1 - maxwhigh;

print('Fig8 resonance curve', '-depsc');

m =1.79;
k =3.92;
b=0.1;

xinitial = 0;

vinitial = -1;

disp('Figures 9-12 are for m = 1.79 kg, k =3.92 N per m, b = 0.1 Ns per m, x(t=0) =0
m, v(t=0) = -1 m per s’);

[x14, v14] = RK4(xinitial, vinitial, t, m, k, b, zeros(1, 743), h, 743);

[x15] = RK4(x14(end), vl4(end), t, m, k, b, -ones(1, int64(steps) - 743 + 2), h,
steps - 743 + 2);

x15 = x15(2:length(x15));

x16 = cat(2, x14, x15);

[x17] = RK4(x14(end), vl4(end), t, m, k, b, ones(1, int64(steps) - 743 + 2), h,
steps - 743 + 2);

x17 = x17(2:length(x17));

x18 = cat(2, x14, x17);

fig9 = figure;

xlabel('t (s)', ‘FontSize’, 12);

ylabel('x (m)', ‘FontSize’, 12);

17

set(gca, ‘FontSize’, 12);

ylim([-1.1 1.1]);

hold on;

plot(t, x16); grid

plot(t, x18);

¢ = legend('same direction as initial velocity', 'opposite direction to initial velocity’);

set(g, ‘FontSize’, 10);
hold off;
print('Fig9 sudden force peak’, ‘-depsc');

[x19, v19] = RK4(xinitial, vinitial, t, m, k, b, zeros(1, 531), h, 531);

[x20] = RK4(x19(end), v19(end), t, m, k, b, -ones(1, int64(steps) - 531 + 2), h,
steps - 531 + 2);

x20 = x20(2:length(x20));

x21 = cat(2, x19, x20);

[x22] = RK4(x19(end), v19(end), t, m, k, b, ones(1, int64(steps) - 531 + 2), h,
steps - 531 + 2);

x22 = x22(2:length(x22));

x23 = cat(2, x19, x22);

fig10 = figure;

xlabel('t (s)', ‘FontSize’, 12);

ylabel('x (m)', ‘FontSize’, 12);

set(gca, ‘FontSize’, 12);

ylim([-1.1 1.1]);

hold on;

plot(t, x21); grid

plot(t, x23);

g = legend('same direction as initial velocity', 'opposite direction to initial velocity’);

g.Location = ‘best’;

set(g, ‘FontSize’, 10);

hold off;

print('Figl10 sudden force trough', '-depsc');

[x24, v24] = RK4(xinitial, vinitial, t, m, k, b, zeros(1, 426), h, 426);

[x25] = RK4(x24(end), v24(end), t, m, k, b, -ones(1, int64(steps) - 426 + 2), h,
steps - 426 + 2);

x25 = x25(2:length(x25));

x26 = cat(2, x24, x25);

[x27] = RK4(x24(end), v24(end), t, m, k, b, ones(1, int64(steps) - 426 + 2), h,
steps - 426 + 2);

18

x27 =x27(2:length(x27));

x28 = cat(2, x24, x27);

figll = figure;

xlabel('t (s)', ‘FontSize’, 12);
ylabel('x (m)', ‘FontSize’, 12);
set(gca, ‘FontSize’, 12);
ylim([-1.1 1.1]);

hold on;

plot(t, x26); grid

plot(t, x28);

g = legend('same direction as initial velocity', 'opposite direction to initial velocity’);

g.Location = ‘best’;

set(g, ‘FontSize’, 10);

hold off;

print('Figl1 sudden force -ve 0', '-depsc');

[x29, v29] = RK4(xinitial, vinitial, t, m, k, b, zeros(1, 638), h, 638);

[x30] = RK4(x29(end), v29(end), t, m, k, b, -ones(1, int64(steps) - 638 + 2), h,
steps - 638 + 2);

x30 = x30(2:length(x30));

x31 = cat(2, x29, x30);

[x32] = RK4(x29(end), v29(end), m, k, b, ones(1, int64(steps) - 638 + 2), h,
steps - 638 + 2);

x32 =x32(2:length(x32));

x33 = cat(2, x29, x32);

figl2 = figure;

xlabel('t (s)', ‘FontSize’, 12);

ylabel('x (m)', ‘FontSize’, 12);

set(gca, ‘FontSize’, 12);

ylim([-1.1 1.1]);

hold on;

plot(t, x31); grid

plot(t, x33);

g = legend('same direction as initial velocity', 'opposite direction to initial velocity’);

g.Location = ‘best’;

set(g, ‘FontSize’, 10);

hold off;

print('Figl2 sudden force +ve 0', '-depsc');

19

[x, v, E | = analytic(xinitial, vinitial, t, m, k, b, steps)

vinitial <= (
phi = atan(sqrt(k/m)*xinitial/vinitial);

phi = atan(sqrt(k/m)*xinitial/vinitial) + pi;

A = sqrt((xinitial*2 + vinitial*2)/(sin(phi)*2 + (k*cos(phi)*2)/m));
n = 1:steps-1;
x(n) = -A*exp(-b*t(n)/(2*m))*sin(t(n)*sqrt(k/m - (b/(2*m))”2) - phi);

v(n) = -A*exp(-b*t(n)/(2*m))*(-(b/(2*m))*sin(t(n)*sqrt(k/m - (b/(2%m))”2) - phi)
+ sqrt(k/m - (b/(2*m))*2)*cos(t(n)*sqrt(k/m - (b/(2*m))"2) - phi));

E(n) = 0.5*m*v(n)"2 + 0.5*k*x(n)"2;

[X, v, E | = doEuler(xinitial, vinitial, m, k, b, F, h, steps)

x(1) = xinitial;
v(1) = vinitial;
n = l:steps - 1;
a(n) = -k*x(n)/m - b*v(n)/m + F(n)/m;
E(n) = 0.5*m*v(n)*2 + 0.5%k*x(n)"2;
x(n+1) = x(n) + v(n)*h;
v(n+1) = v(n) + a(n)*h;

x = x(1:length(x)-1);
v =v(1:length(v)-1);

[X, v, E | = improvedEuler(xinitial, vinitial, m, k, b, F, h, steps)

x(1) = xinitial;
v(1) = vinitial;

20

n = l:steps - 1;
a(n) = -k*x(n)/m - b*v(n)/m + F(n)/m;
E(n) = 0.5*m*v(n)"2 + 0.5%k*x(n)"2;
x(n+1) = x(n) + v(n)*h + 0.5*h*h*a(n);
v(n+1) = v(n) + a(n)*h;

x = x(1:length(x)-1);
v =v(1:length(v)-1);

[x, v, E | = Verlet(xinitial, vinitial, x2, v2, m, Kk, b, F, h, steps)

x(1) = xinitial;
v(1) = vinitial;
xX(2) = x2(2);
v(2) =v2(2);
E(1) = 0.5*m*v(1)"2 + 0.5%k*x(1)"2;
n = 2:steps - 1;
a(n) = -k*x(n)/m - b*v(n)/m + F(n)/m;
E(n) = 0.5*m*v(n)"2 + 0.5*k*x(n)"2;
x(n+1) = 2*x(n) - x(n-1) + h*h*a(n);
v(n+1) = (x(n+1)-x(n))/(h);

x = x(1:length(x)-1);
v =v(1:length(v)-1);

[X, v, E | = EulerCromer(xinitial, vinitial, m, k, b, F, h, steps)

x(1) = xinitial;
v(1) = vinitial;
n = l:steps - 1;
a(n) = -k*x(n)/m - b*v(n)/m + F(n)/m;
E(n) = 0.5*m*v(n)"2 + 0.5%k*x(n)"2;
v(n+1) = v(n) + a(n)*h;
x(n+1) = x(n) + v(n+1)*h;

x = x(1:length(x)-1);
v =v(1:length(v)-1);

21

[x, v, E | = RK4(xinitial, vinitial, t, m, k, b, F, h, steps)

x(1) = xinitial;
v(1) = vinitial;
n = 1:steps - 1;

a(n) =-k*x(n)/m - b*v(n)/m + F(n)/m;
E(n) = 0.5*m*v(n)"2 + 0.5*k*x(n)"2;
y = [x(n), v(n)];
dy = @deriv;
k1=dy(y, t(n), k, m, b, F(n));
k2=dy(y+(h/2)*k1 ,t(n)+h/2, k, m, b, F(n));
k3=dy(y+(h/2)*k2, t(n)+h/2, k, m, b, F(n));
kd4=dy(y+h*k3, t(n)+h, k, m, b, F(n));
y =y + h*(k1+2*k2+2*k3+k4)/6;
x=[xy@D)I;
v=[vyQ)l;

x = x(1:length(x)-1);
v =v(1:length(v)-1);

[retval | = deriv(y, t, k, m, b, F)

retval=[y(:,2), -k*y(:,1)/m - b*y(:,2)/m + F/m];

22

