
Calculating the impedance of A.C. LCR circuits
using Object Oriented Programming in C++

Meirin Oan Evans
9214122

School of Physics and Astronomy
The University of Manchester

Computing Report

May 2018

Abstract

The objective of this project was to write a code to calculate the impedance of A.C.
circuits with an arbitrary number of resistors, capacitors and inductors connected in series
or in parallel. This was done using the Object Oriented Programming features available
in C++. The code allows the user to create a component library of their own specifica-
tions. It subsequently constructs a circuit from this component library whilst connecting
components either in series or in parallel. Finally, it outputs the magnitude of impedance
and phase shift for each component, as well as the magnitude of impedance and phase
shift for the entire circuit.

1 Introduction

This project calculates the impedance of Alternating Current (A.C.) circuits with any
number of resistors, capacitors and inductors together in series or in parallel. Examples
of simple circuits with 1 of each of these components are shown in Figure 1, part (a)
showing the components in series and part (b) showing the components in parallel. When
a circuit grows, it becomes tedious to manually calculate the impedance of each com-
ponent and then the impedance of the whole circuit, therefore a code becomes useful to
deal with this problem. The project uses data and function encapsulation, inheritance
and polymorphism, and thus displays the 3 pillars of Object Oriented Programming. The
code also uses some advanced features of C++ to increase functionality. Some of these
features, such as static class members, headers and multiple source files, the list Standard
Template Library linear container, exception handling (using try, throw and catch), smart
pointers and lambda functions, only became available in C++11 [1].

(a) Components connected in series.
(b) Components connected in parallel.

Figure 1: Circuit diagrams of A.C. circuits with a power supply, capacitor, resistor and inductor,
all connected by wires.

2 Code design and implementation

To simplify reading, the code is split into a header file, a .cpp source file that implements
the contents of the header file and a .cpp source file that contains the main function. The
code was designed to be compiled and run in a Microsoft Visual Studio 2013 Integrated
Development Environment as a Win32 Console Application empty project [2].

2.1 Header file

The header file has a .h extension and contains constant definitions such as π (used in
the argument of complex numbers) and constants to deal with exceptions using try, throw
and catch. It then goes on to define a complex number class to store impedances before
defining an abstract base class for components. The derived classes of the component
class are resistors, capacitors, inductors, diodes, bulbs, wires and power supplies - most
of what is found in an A.C. LCR (inductor, capacitor, resistor) circuit. In addition, a
generic circuit class (which is not a derived class) is defined. The circuit class stores the
impedance of the whole circuit and contains functions to add impedances for components
in series or in parallel, then modifies the total impedance accordingly.

Within the class definitions are declarations for the functions they implement. A header
guard is used to prevent constant definitions, class declarations and function declarations
from occurring repeatedly when the header file is included in the multiple .cpp source

1

files. This situation would throw a compile time error, so a header guard is used to only
link the header file once, as shown in Figure 2. This is not a problem for .cpp source files
as they are only included once by the linker by default.

i f n d e f CLASS H / / h e a d e r gua rd
d e f i n e CLASS H
i n c l u d e <i o s t r e a m > / / f o r o u t p u t t o s c r e e n
i n c l u d e < l i s t > / / f o r s t o r i n g base c l a s s p o i n t e r s
i n c l u d e <memory> / / f o r c l e a r i n g c i n b u f f e r
c o n s t i n t d i v i d e F l a g { −1 } ; / / f o r a rgument e x c e p t i o n
c o n s t d ou b l e p i { 3.141592653589793 } ; / / f o r a r g
u s i n g namespace s t d ;

/ / complex c l a s s
c l a s s complex {

. . .
} / / end complex c l a s s

(a) Top of the header file.

/ / C i r c u i t c l a s s
c l a s s c i r c u i t {

. . .
} ; / / end c i r c u i t c l a s s

e n d i f / / end h e a d e r f i l e

(b) Bottom of the header file.

Figure 2: Different parts of the header file to show the use of a header guard. The header guard is
the first 2 lines of the header file (apart from the comments) and the last line of the header file.

2.2 Implementation file

The implementation file, which has the same name as the header file but with a different
extension, contains the function definitions of the component derived classes. These are
functions to set and get the angular frequency in the circuit, to get the impedance of a
component, the magnitude and argument of impedance of a component and to return the
name of a component. In the component class these are pure virtual functions, which
means that an instance of a component class cannot be created. Derived classes have to
override every pure virtual function from the base class to create an instance of that class.
The technique for defining and overriding pure virtual functions is shown in Figure 3,
with the function definitions shown in part (a) and overridden functions shown in part (b).

2.3 Main file

The main file contains the main function which provides the user interface and uses all
features that have been declared, defined and implemented in the header as well as im-
plementation files. First, the angular frequency is set, then the details of each component

2

are read in. Once all components have been entered the code connects the components
together either all in series or all in parallel, before displaying the details of the impedance
of each component as well as the entire circuit. Finally, the code gives a visual represen-
tation of the circuit. A screenshot of the main function is shown in Figure 4.

3 Results

3.1 Code use

The code uses a simple user interface where all interaction is via the keyboard and
terminal. A possible use of the code would be to enter the details of each component in
a circuit in the initial stage of an electronics lab experiment, and then take the necessary
measures to account for circuit impedance when deciding on the size of systematic errors
in the final results. Such a situation is shown in Figure 5,

3.2 Input

The code uses minimal input to obtain all the information required. As soon as the
circuit angular frequency is entered, the user can select their components by pressing
a single letter. The user only needs to enter details of diodes, bulbs, wires and power
supplies if they are non-ideal, which means that they have some resistance, capacitance
or inductance (called parasitic resistance/capacitance/inductance) [4]. In the same way,
the user can enter details of any non-ideal property of a resistor, capacitor or inductor.
In the case of a resistor, these non-ideal properties would be capacitance or inductance.
The final piece of input is a single letter to say whether the components are in series or in
parallel. An example of input is given in Figure 6.

3.3 Output

The real output only begins when all input is finished. The main output is a listing of all
components along with their magnitude and phase-shift of impedance. The same is done
for each component type, for example all resistors are printed along with their magnitude
and phase-shift of impedance. Once this is done, the same information is printed for
the whole circuit, as well as how many of each component are present. To simplify the
comparison between what is carried out in the code and a real experiment, the circuit is
shown in a way that tries to copy a circuit diagram, for example in Figure 7.

4 Discussion

The 3 pillars of Object Oriented Programming are clearly implemented in this code. By
defining class functions to decide how the different component classes behave, data and
function encapsulation is shown. Inheritance is shown by having the resistor, capacitor,
inductor, diode, bulb, wire and power supply classes derive from the component base
class. In using the component class as a pure interface, which means one cannot create an
instance of a component class, polymorphism is shown.

Some advanced features are also implemented to increase functionality. To display the
use of static variables where the access is shared between all objects of a class, a variable
for the current number of components is created before the start of the main function in
the global part of the code. This variable is incremented in the component constructor

3

and decremented in the component destructor. As the user enters components the current
number of components is printed. A list is used to store and print the components as base
class pointers, which is chosen over an array or a vector to easily sort the components.
This is done using a lambda function to sort the list in decreasing order of impedance
magnitude, as shown in Figure 8.

An example of exception handling with try, throw and catch is used when calculating
the argument of a complex number. When both the real and imaginary parts of a complex
number are 0, the argument is undefined. This is the statement printed to the error stream
by the catch block. Usually, a division (an argument calculation starts with a division)
with 0 in the denominator would be undefined, but in this case infinity is returned using
numeric limits<double>::infinity because an inverse tan with 0 in the denominator cor-
responds to either + or - π/2, depending on the sign of the numerator. Smart pointers,
rather than raw pointers, are used to store components in a list to clarify the ownership of
the pointer.

5 Conclusions

The main point that could be improved in the code would be the ability to print circuits
of any number of individually nested circuits, as this would allow visualisation of more
situations, such as that shown in Figure 9. This could make the code applicable to some
forefront research. Currently, the code allows any number of circuits to be nested and
calculates the total circuit impedance, but does not print a visual representation of a circuit
with two or more nested circuits within it. It would be a difficult and tedious task to allow
the code to do so.

Additionally, the code might be improved if it included more of the C++ advanced
features such as function and class templates and namespaces. However, it proved difficult
to find a worthwhile use for function templates since not many variable types were used
(only the complex number class for storing impedance and double for everything else)
and different operations were performed on these 2 types, making a function template
unsuitable. Similarly, there was no need for class templates as double and complex were
not used in the same way. Throughout the code, there was no case where there was a
need to prefix anything with the scope resolution operator (::). Care was taken to avoid
name collisions, therefore a namespace would only have complicated the code. This may
not have been the case if many external libraries were used, but again, care was taken to
minimise the amount of external libraries that were included.

Apart from this, the code successfully calculates the impedance of A.C. LCR circuits,
and also extends beyond this, by outputting a circuit in a visually recognisable manner and
allowing for non-ideal components. Some advanced features of C++ are implemented to
simplify code use as well as to add extra features and functionality.

References

[1] C++, C++11, Bell Labs, Bjarne Stroustrup, Murray Hill, New Jersey, United States,
hyper link to google search for C++11.

4

https://www.google.co.uk/#q=C%2B%2B11
https://www.google.co.uk/#q=C%2B%2B11

[2] Microsoft Visual Studio, Microsoft Visual Studio 2013, Microsoft Corporation,
Redmond, Washington, United States, hyper link to google search for Microsoft

Visual Studio 2013.

[3] http://www.oberlin.edu/physics/catalog/demonstrations/em/LRC.html,
Resonance in LRC series circuits, Oberlin College & Conservatory, Accessed /5/18.

[4] Gao, X., Liou, JJ., Wong, W., Vishwanathan, S., “An improved electrostatic discharge
protection structure for reducing triggering voltage and parasitic capacitance”, Solid-State
Electronics, Volume 47, pages 1105-1110, 2003, web page hyper link.

[5] http://audilab.bmed.mcgill.ca/AudiLab/teach/circuit/circuit.html,
Circuit models, Robert, W., Funnell, J., Accessed /5/18.

Appendix

The number of words in this document is 2327.

This document was last saved on 14/5/2018 at 23:33.

5

https://www.google.co.uk/#q=Microsoft+Visual+Studio+2013
https://www.google.co.uk/#q=Microsoft+Visual+Studio+2013
http://www.oberlin.edu/physics/catalog/demonstrations/em/LRC.html
https://www.researchgate.net/profile/JJ_Liou/publication/222236816_An_improved_electrostatic_discharge_protection_structure_for_reducing_triggering_voltage_and_parasitic_capacitance/links/00b7d5368d56bf2688000000.pdf
http://audilab.bmed.mcgill.ca/AudiLab/teach/circuit/circuit.html

/ / A b s t r a c t ba se c l a s s f o r component
c l a s s component {
p r o t e c t e d :

complex impedance ;
do ub l e f r e q u e n c y ;
s t a t i c i n t n u m o b j e c t s ;

p u b l i c :
/ / c o n s t r u c t o r
. . .
/ / pu r e v i r t u a l f u n c t i o n t o s e t f r e q u e n c y
v i r t u a l vo id s e t o m e g a (c o n s t do ub l e a n g u l a r f r e q) = NULL;
/ / pu re v i r t u a l f u n c t i o n t o g e t f r e q u e n c y
v i r t u a l do ub l e ge t omega () c o n s t = NULL;
/ / pu re v i r t u a l f u n c t i o n t o g e t impedance
v i r t u a l complex g e t i m p e d a n c e () c o n s t = NULL;
/ / pu re v i r t u a l f u n c t i o n t o g e t magn i tude o f impedance
v i r t u a l do ub l e mag impedance () c o n s t = NULL;
/ / pu re v i r t u a l f u n c t i o n t o g e t phase d i f f e r e n c e
v i r t u a l do ub l e phase () c o n s t = NULL;
/ / pu re v i r t u a l f u n c t i o n t o g e t component t y p e
v i r t u a l s t r i n g t y p e () c o n s t = NULL;
/ / v i r t u a l d e s t r u c t o r
v i r t u a l ˜ component () { numobjec t s−−; }

} ; / / end a b s t r a c t ba se c l a s s f o r component

(a) Definitions of pure virtual functions in the component base class, from the header file.

/ / r e s i s t o r o v e r r i d e n f u n c t i o n s
/ / o v e r r i d e pu re v i r t u a l f u n c t i o n t o s e t f r e q u e n c y
vo id r e s i s t o r : : s e t o m e g a (c o n s t do ub l e a n g u l a r f r e q) {

f r e q u e n c y = a n g u l a r f r e q ; }
/ / o v e r r i d e pu re v i r t u a l f u n c t i o n t o g e t f r e q u e n c y
do ub l e r e s i s t o r : : ge t omega () c o n s t { r e t u r n f r e q u e n c y ; }
/ / o v e r r i d e pu re v i r t u a l f u n c t i o n t o g e t impedance
complex r e s i s t o r : : g e t i m p e d a n c e () c o n s t {

r e t u r n impedance ; }
/ / o v e r r i d e pu re v i r t u a l f u n c t i o n f o r impedance magn i tude
do ub l e r e s i s t o r : : mag impedance () c o n s t {

r e t u r n impedance . mod () ; }
/ / o v e r r i d e pu re v i r t u a l f u n c t i o n t o g e t phase d i f f e r e n c e
do ub l e r e s i s t o r : : phase () c o n s t { r e t u r n impedance . a r g () ; }
/ / o v e r r i d e pu re v i r t u a l f u n c t i o n t o g e t component t y p e
s t r i n g r e s i s t o r : : t y p e () c o n s t { r e t u r n ” r e s i s t o r ” ; }

(b) Functions to override the pure virtual functions in the derived classes, from the implementation
file.

Figure 3: Different parts of the header and implementation files to show the technique for defining
and overriding pure virtual functions. The word virtual is added before the function definition in
the component base class to make them virtual functions, and the functions are set to 0 to make
them pure virtual functions. 6

/ / Main code
i n t main () {

c o u t << ” Outpu t w i l l be w r i t t e n t o s c r e e n \& o u t p u t . t x t ” ;
/ / I n t r o d u c e code
c o u t << ”\ nThi s code a l l o w s you t o i n p u t r e s i s t o r s ,
c a p a c i t o r s & i n d u c t o r s i n s e r i e s o r p a r a l l e l ” ;
/ / F requency i n c i r c u i t
do ub l e f r e q ;
c o u t << ”What i s t h e c i r c u i t a n g u l a r f r e q u e n c y ? ” << e n d l ;
c i n >> f r e q ; / / r e a d i n p u t f r e q u e n c y
w h i l e (c i n . f a i l () | | f r e q <= 0) { / / f r e q u e n c y n o t +ve

c o u t << ” I n p u t has t o be p o s i t i v e ” << e n d l ;
c o u t << ”What i s t h e c i r c u i t a n g u l a r f r e q u e n c y ?\n ” ;
c i n . c l e a r () ;
c i n . i g n o r e (n u m e r i c l i m i t s <s t r e a m s i z e > : : max () , ’\n ’) ;
c i n >> f r e q ; / / g e t new f r e q u e n c y

} / / end w h i l e f r e q u e n c y n o t +ve
c i n . c l e a r () ; / / c l e a r r e s t o f c i n b u f f e r
c i n . i g n o r e (n u m e r i c l i m i t s <s t r e a m s i z e > : : max () , ’\n ’) ;
/ / C r e a t e a r r a y o f base c l a s s p o i n t e r s
l i s t <s h a r e d p t r <component>> c o m p o n e n t l i b r a r y ;
c h a r more components ;
/ / D e c l a r e r e s i s t a n c e , c a p a c i t a n c e , i n d u c t a n c e
do ub l e R{0} ,C{ n u m e r i c l i m i t s <double > : : i n f i n i t y () } , L{0} ;
/ / Ask u s e r i f t h e y want t o e n t e r d a t a from f i l e
c h a r r e a d f i l e ;
c o u t << ”Would you l i k e t o add t h e c o n t e n t s o f
components . d a t t o your component l i b r a r y ? (y / n) ” << e n d l ;
c i n >> r e a d f i l e ;
w h i l e (c i n . f a i l () | | ! (r e a d f i l e == ’ y ’ | | r e a d f i l e == ’ n ’)) {

c o u t << ” S o r r y \ n I n p u t has t o be y or n . \ nWould you l i k e
t o add components . d a t t o your component l i b r a r y ? ” ;
c i n . c l e a r () ; / / c l e a r r e s t o f c i n b u f f e r
c i n . i g n o r e (n u m e r i c l i m i t s <s t r e a m s i z e > : : max () , ’\n ’) ;
c i n >> r e a d f i l e ;

} / / end w h i l e r e a d f i l e y / n f a i l
. . .

Figure 4: A part of the main function in the main file, showing some of the code that asks for user
input.

7

Figure 5: Photo of a simple example of an electronics lab experiment where using this code could
provide a real world application [3].

Figure 6: A screenshot of a code fragment that asks for user input. Only one component with
minimal details is entered for simplicity, and also to capture as much as possible of this code
fragment.

8

(a) Components connected in series.

(b) Components connected in parallel.

Figure 7: Screenshots of code fragments that display a built circuit in a visually appealing way.
As many components as possible are entered to fill the screen.

Figure 8: A screenshot of a code fragment that shows the component list sorted in decreasing
order of magnitude of impedance; displaying the use of the list Standard Template Library linear
container and a lambda function.

9

Figure 9: Circuit diagram for an example of a complicated LCR circuit where it might be
useful to have a code feature whereby different components can be connected in series or in
parallel, rather than all components being connected in the same way [5]. This particular example
models different parts of the middle-ear as electrical components with resistance, capacitance and
inductance. The setup looks complicated as different components are connected in series or in
parallel, but it still only contains resistors, capacitors, inductors, wires and a power supply.

10

	Introduction
	Code design and implementation
	Header file
	Implementation file
	Main file

	Results
	Code use
	Input
	Output

	Discussion
	Conclusions

