
Using microcontrollers and solid state sensors
Meirin Evans

9214122

School of Physics and Astronomy

The University of Manchester

Second Year Laboratory Report

May 2016

This experiment was performed in collaboration with John Cobbledick.

Abstract

Through using a microcontroller combined with electronic components, output voltage
measurements from various circuits were made. Along with a Radio Frequency Identifi-
cation Device (RFID), the microcontoller was used to convert the device’s binary reading
to an RFID tag’s individual number.  

1. Introduction

Microcontrollers are small computers which are connected via Universal Serial Bus
(USB) to a larger computer which programs the microcontroller. They have an inbuilt
circuit board to connect to other electronic components enabling them to measure the out-
puts as well as control components. Microcontollers can be used in inductor/capacitor/
resistor circuits as well as with amplifiers, transistors and diodes. They can also be used
with an oscilloscope’s wave generator to produce a variety of voltages and the oscillo-
scope can measure the microcontroller’s output voltage. Solid state sensors are used
widely; examples include Radio Frequency Identification Devices (RFID), temperature
sensors, alcohol sensors, proximity sensors, range sensors, frequency to light converters
and gas sensors [1].

2. Theory

Microcontrollers can be used to construct a peak and hold circuit, shown in Figure 1. The
circuit includes an oscilloscope signal, a diode and a capacitor (with negative terminal
grounded) in series. A voltage reading is taken between the capacitor and diode. The cir-
cuit bears this name since the signal passes through the diode and charges the capacitor,
giving a voltage across it, but when the capacitor discharges no current can pass through
the diode in the other direction so it holds the same voltage. A higher capacitance means
a higher time constant (longer discharge time) so the peak is held for longer.

RFID tags have individual decimal numbers associated with them, for example school
cafeteria tags as illustrated in Figure 2. For cafeteria tags, this number may then be linked
to the holder’s name and balance, which could then be displayed on a screen. When a tag
is flashed within 1-2 cm of a sensor it reads the tag’s number as a series of binary bits
with different time lengths. This includes bits that notify the sensor as to when the signal
starts and ends. It is usually sufficient to flash the tag in front of the sensor. The binary
number is converted to hexadecimal (base 16) within the microcontroller, as shown in Ta-
ble 1. Converting the microcontroller output to a string using a programming language
gives the number in ASCII format. ASCII format is a system used by computers to dis-

!2

Reading

Fig 1. Circuit diagram for peak and hold. Includes an oscilloscope signal, a diode and a capacitor.

play characters like numbers, letters and punctuation or to give instructions to the com-
puter. Once the number is in ASCII it can be directly converted to decimal to give a
recognisable number.

A 5 digit (for example) hexadecimal ghijk is converted to decimal through Equation 1;

! .

The value of each digit is multiplied by increasing powers of 16 from the right,
where g through k can be 0-9 or A-F (corresponding to 10-15). In ASCII, a 2 indicates the
start of a signal whilst a 3 indicates the end. The last 2 digits in the hexadecimal number

kjihgghijk ++++= 16161616 234

!3

(1)

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

ASCII 48 49 50 51 52 53 54 55 56 57 65 66 67 68 69 70

Table 1. Table showing binary, hexadecimal and ASCII equivalents for decimal 0-15.

Fig 2. Picture of RFID tags, like those used in school cafeterias [2].

are a checksum and are therefore ignored when calculating the decimal number. The first
2 digits are also ignored as these are only used to calculate the checksum. The checksum
is useful in verifying whether the information was correctly received. To do this, the tag
number’s hexadecimal digits are paired then an XOR operation is performed on all pairs
together. To understand an XOR operation numbers are converted to binary and the bina-
ry digits of the numbers are then compared. An XOR gives 1 if digits are different and 0
if they are the same, as illustrated in Table 2. If the XOR operations of all the pairs corre-
sponding to the tag number give the checksum, the data has been read correctly.

3. Experimental method

In the peak and hold circuit, capacitors of 1nF and 100nF were used to compare be-
haviour.

The microcontroller used was an Arduino UNO [3] board which could be programmed
using the Arduino language, which is similar to C. An RDM630 [4] operating at 125kHz
was used as an RFID sensor. Pictures of both are in Figure 2. The program converted the
ASCII characters read by the Arduino to tag number, which was then printed to the Ar-
duino’s serial port. The program also did the XOR operations to obtain the tag’s check-
sum and compared it with the read value. The program used to read the RIFD tags is in
the Appendix. Viewing the series of bits read by the sensor on an oscilloscope showed
that the first 2 digits of the hexadecimal number should be ignored in calculating the tag
number.

!4

Fig 2. Picture of an Arduino UNO board [5] (left). Picture of RFID sensor RDM630 [6] (right).

Table 2. Example of XOR operation on 2 hexadecimal numbers 3C and CC. The binary representations
are put in columns of decreasing powers of 2 for ease in calculating the result. 3C XOR CC gives F0.

Hexadecimal Decimal 27 26 25 24 23 22 21 20

3C 60 0 0 1 1 1 1 0 0

CC 204 1 1 0 0 1 1 0 0

F0 240 1 1 1 1 0 0 0 0

4. Results
Graphs of the input and output voltage shapes for both capacitors are shown in Figure 3.

The results from reading RFID tags are shown in Table 3. All the tags’ calculated check-
sums agreed with the initial reading.

A screenshot of an example output from the Arduino’s serial is shown in Figure 4. It
shows an introductory comment, the tag’s checksum, a statement saying whether the
checksum was read correctly and the tag’s number.

!5

Hexadecimal 3C00CC825725 3C00CEF5C3C4

ASCII 2 51 67 48 48 67 67 56 50
53 55 50 53 3

2 51 67 48 48 67 69 70 53
67 51 67 52 3

Tag number 13402711 13563331

Table 3. Table showing conversions from hexadecimal to ASCII to tag number for RFID tags.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2
in
out

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
in
out

Voltage (V)

time (s) time (s)

Fig 3. Plots of input and output voltage against time. Left is 1nF, right is 100nF. 100nF holds the peak for
longer than 1nF.

5. Discussion

The main difficulty in converting the hexadecimal reading of an RFID tag to its tag num-
ber was in the step of converting hexadecimal to ASCII. Particularly troublesome was
splitting the whole hexadecimal number into its individual digits to then put into arrays.
Problems arose when trying to access array elements. To overcome this a do-while loop
was used to read the tag’s hexadecimal digits whilst a for loop was used to do conver-
sions, as opposed to a for loop for both.

Another detail requiring particular attention is the use of long format rather than int when
calculating the final number. The maximum decimal using int is 32767, obtained from
the fact that an int is held in 16 bits and 216 is 65536, but negative numbers as well as 0
need to be included. A long, however, is held in 32 bits and 232 is 4294967296, giving a
maximum long of 2147483647. The final tag numbers were between the maximum val-
ues of int and long therefore long was appropriate. Int was used in other steps to speed up
the program, though it probably did not change the speed much.

!6

Fig 4. Screenshot of the Arduino’s output on the serial for one of the tags used. Includes an introductory
comment, the tag’s checksum, a statement saying whether the checksum was read correctly and the tag’s
number.

6. Summary

Microcontrollers are very useful devices to manipulate electronic components, which are
themselves easily manipulable using programming. They are most useful when used with
solid state sensors to read, convert and output information from the sensors.

References

[1] Lalauze, R. & Pijolat, C., “A new approach to selective detection of gas by
an SnO2 solid-state sensor”, Sensors and Actuators, Volume 5, Issue 1, 1984.

[2] http://www.globalspec.com/learnmore/data_acquisition_signal_condition-
ing/data_input_devices/rfid_tags, RFID Tags Information, IHS Engineering360,
Accessed 30/03/2016.

[3] https://www.arduino.cc/en/Main/ArduinoBoardUno, Arduino UNO &
Genuino UNO, Arduino, Accessed 21/03/2016.

[4] http://www.seeedstudio.com/depot/datasheet/RDM630-Spec..pdf, RD-
M630 Specification, Seed Studio, Accessed 21/03/2016.

[5] https://www.arduino.cc/en/Guide/Windows, Getting Started with Arduino
and Genuino on Windows, Arduino, Accessed 21/03/2016.

[6] http://store.iteadstudio.com/index.php?main_page=product_info&product-
s_id=6, 125kHz RFID module RDM630 - UART, iStore, Accessed 21/03/2016.

The number of words in this document is 1547.

This document was last saved on 8/5/2016 at 21:31.

Appendix

// allow use of mySerial
#include <SoftwareSerial.h>

// use pin 10 on Arduino
SoftwareSerial mySerial(10, 11); // RX, TX.

// create arrays of ints
int fig[14];
int check[5];

// setup loop
void setup()
{
 // Open hardware serial port for Serial Monitor.

!7

 Serial.begin(9600);
 // debug statement
 Serial.println("RFID reader - simple test.");

 // Set the baud rate for the SoftwareSerial port.
 mySerial.begin(9600);
}

// main loop
void loop()
{
 // initialise j
 int j = 0;
 // long format for tag num
 long dec;
 // do while loop for reading
 do {
 if (mySerial.available() > 0) {
 fig[j] = mySerial.read();
 j++;
 }
 } while (j < 14);
 // for loop to do conversions
 for (int i=0; i < 14; i++) {
 if (fig[i] > 47 && fig[i] < 58) {
 fig[i] = fig[i]-48;
 }
 else if (fig[i] > 64 && fig[i] < 71) {
 fig[i] = fig[i]-55;
 }
 }
 // for loop to pair digits
 for (int k = 1; k < 12; k = k + 2) {
 check[k]= fig[k]*16 + fig[k+1];
 }
 // initialise csum
 int csum = 0;
 // for loop for checksum
 for (int h = 1; h < 10; h = h + 2){
 csum = csum^check[h];
 }
 // print checksum
 Serial.println(csum,HEX);
 if (csum == check[11]) {
 Serial.println("correct checksum");
 }

!8

 // calculate tag num
 dec = fig[10] + fig[9]*16 + fig[8]*power(16,2) + fig[7]*power(16,3) +
 fig[6]*power(16,4) + fig[5]*power(16,5);
 // print tag num
 Serial.println(dec);
}

// user defined power func
long power(int a, int b) {
 long c = a;
 for (int p = 0; p < b - 1; p++){
 c = a*c;
 }
 return c;
}

!9

