Rotation-vibration transitions in ethyne

Meirin Evans

9214122

School of Physics and Astronomy
The University of Manchester

Second Year Laboratory Report

Mar 2016

Abstract

Through measurements with a spectrometer, the rotation-vibration energy spectra of water and ethyne (acetylene) were obtained. Water was used as calibration and the ethyne spectrum was studied to determine the moments of inertia of its ground and first excited states. The measured ground state moment of inertia was $(2344 \pm 16) \times 10^{-49} \mathrm{kgm}^{-2}$, whereas $(2401 \pm 17) \times 10^{-49} \mathrm{kgm}^{-2}$ was obtained for the first excited state. The results' accuracies were limited by the accuracy in determining the spectral peaks' widths.

1. Introduction

Materials such as water and ethyne (acetylene), $\mathrm{C}_{2} \mathrm{H}_{2}$, absorb specific radiation wavelengths corresponding to rotational-vibrational energy state transitions. These transitions are quantised and thus are seen as spectral peaks. Measuring the spectroscopic wavenumbers, k, of these peaks allows identification of the transitions. Molecular vibrations can be quantified by the moment of inertia, I, which may be calculated from the transition energies. Knowing the moment of inertia allows calculation of bond length, as the moment of inertia of a rotating mass, m, is given by

$$
\begin{equation*}
I=m r^{2} \tag{1}
\end{equation*}
$$

where r is the distance of the mass from the rotation centre.

2. Theory

The spectrometer used in this experiment was a differential spectrometer, therefore when channel number is plotted against spectrometer output, minima occur at the start of a transition peak, whilst maxima occur at the end. This is why sharp differential peaks will be seen rather than wider transition peaks. The spectrometer applies a bias voltage of 5 V , making 5 V the effective 0 . The midpoint between maxima and minima in plots such as Figure 1 gives the channel number of the transition peak centre.

Fig 1. Water spectrum. The channel numbers of the maxima and minima are labelled. Water has 4 transitions peaks and other fluctuation about 5 V is noise.

Knowing the relationship between channel number and wavenumber allows conversion to find transition wavenumber. Each transition peak is associated with a quantum number. Knowing the relationship between transition wavenumber and quantum number allows calculation of moment of inertia. If this relationship is linear the moments of inertia of the ground and first excited states of a molecule are the same, I, given by

$$
\begin{equation*}
I=\frac{h^{2}}{4 \pi^{2} B} \tag{2}
\end{equation*}
$$

where B is the linear gradient and h is Planck's constant ($6.626 \times 10^{-34} \mathrm{Js}$). If the relationship between wavenumber and quantum number is quadratic the moments of inertia of the ground and first excited states are different, given by

$$
\begin{equation*}
I_{0}=\frac{h^{2}}{4 \pi^{2}(B+C)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1}=\frac{h^{2}}{4 \pi^{2}(B-C)} \tag{4}
\end{equation*}
$$

where I_{0} and I_{1} are the ground and first excited states moment of inertia respectively and B and C are the linear and quadratic coefficients of the relationship respectively.

For use in Equations 2, 3 and 4 the values of B and C are converted from wavenumber to energy, E, using

$$
\begin{equation*}
E=h c k, \tag{5}
\end{equation*}
$$

where c is the speed of light $\left(3 \times 10^{8} \mathrm{~ms}^{-1}\right)$. Since the masses in ethyne are dominated by carbon, Equation 1 allows estimation of the ethyne $\mathrm{C} \equiv \mathrm{C}$ bond length, with a known value of 118 pm [1].

The fact that maxima and minima in plots such as Figure 1 are different means the transition peak has broadened. One cause for this may be Doppler broadening, giving a peak width of

$$
\begin{equation*}
\sigma=2 k_{0} \sqrt{\frac{k_{B} T}{M c^{2}}}, \tag{6}
\end{equation*}
$$

where k_{0} is the wavenumber of the midpoint between maxima and minima, k_{B} is Boltzmann's constant $\left(1.381 \times 10^{-23} \mathrm{JK}^{-1}\right), T$ is the temperature at which measurements are made and M is the mass of a molecule. Doppler broadening is a result of the motion of the molecule relative to an observer.

3. Experimental method

Water has known transition wavenumbers therefore was used to calibrate ethyne data. Plotting the midpoint channel number against these wavenumbers gave a linear relationship between these variables, as shown in Figure 2. To test whether the relationship between quantum number and transition wavenumber was quadratic or linear the data was fitted to both and the χ^{2} values were compared. This was implemented in a MATLAB [2] script.

Fig 2. Water calibration. The known wavenumbers for water are plotted against the midpoint of the maxima and minima from Figure 1 to obtain the relationship between channel number and wavenumber. Each point is labelled with wavenumber and channel number.

The wavenumber range used was $939.4 \mathrm{~m}^{-1}$, inverting gave a wavelength range of 0.0011 m . The mid-range wavenumbers and wavelength were $1268698.4 \mathrm{~m}^{-1}$ and 788 nm respectively. Using the calibration from Figure 2, the wavenumber step size was $0.52 \mathrm{~m}^{-1}$.

4. Results

The relationship between wavenumber and channel number was found to be linear, as expected, with the residuals shown in Figure 3. Ethyne's spectrum is shown in Figure 4, where five transitions are seen.

Fig 3. Calibration residuals. The transition wavenumbers are plotted against the difference between measured and fitted channel number. The residuals are sufficiently small (given that the channel number range is $1-1801$) to conclude that a linear fit is suitable. The wavenumbers of each transition are labelled.

Fig 4. Ethyne spectrum. As Figure 1 but for ethyne rather than water.

Fig 5. A plot of quantum number against transition channel numbers. The channel numbers for each of of ethyne's five transitions are labelled.

Figure 5 does not show whether the relationship between quantum number and transition channel number is linear or quadratic therefore the residuals for both are shown in Figure 6. Since the quadratic gave a better fit than the linear, the quadratic was used. Its B and C values were $(4680 \pm 30) \times 10^{-26} \mathrm{~J}$ and $(-57 \pm 3) \times 10^{-26} \mathrm{~J}$ respectively.

Fig 6. Left are the residuals for a linear relationship between quantum number and transition channel number. Right is the same but quadratic rather than linear. On the x axis is quantum number whilst on the y is the difference between the measured and fitted channel numbers for ethyne's five transitions. The y axes on both plots are different.
I_{0} and I_{1} were calculated as $(2344 \pm 16) \times 10^{-49} \mathrm{kgm}^{-2}$ and $(2401 \pm 17) \times 10^{-49} \mathrm{kgm}^{-2}$ respectively, giving a difference, ΔI, of $(57 \pm 24) \times 10^{-49} \mathrm{kgm}^{-2}$ through adding errors in quadrature. Equation 1 estimates the ground state bond length, r_{0}, as $(153.1 \pm 0.5) \mathrm{pm}$ and the first excited state bond length, r_{1}, as $(154.9 \pm 0.6) \mathrm{pm}$, giving a stretching, Δr, of $(1.8 \pm 0.8) \mathrm{pm}$.

5. Discussion

The error assigned to the value of a maximum or minimum was ± 0.5 channel numbers as only integer channel numbers were available. The reduced- χ^{2} from Figure 2 was 0.8 , confirming the validity of a linear fit between wavenumber and channel number and the suitability of the error value. The reduced- χ^{2} of the linear fit was 278.78 , whilst the quadratic fit value was 0.105 , meaning the quadratic fit was used. The reduced- χ^{2} for the quadratic fit was slightly small, suggesting a slight overestimate in errors. However, a higher error value could not be fully justified without extra channel numbers in between those used in this experiment. In calculating errors on the moments of inertia the calibration intercept was not used, as it was insignificant compared to other errors.

Using an approximate room temperature of 300 K in Equation 6, σ for water was 3.04 channel numbers. Comparing this with the typical differences between maxima and minima in Figure 1 of seven or eight shows that Doppler broadening cannot be solely responsible for peak width, but was a contributing factor. Other contributors may have been spectrometer instrumental error, such as diffraction.

The estimated bond lengths are different to the true value because the hydrogen atom mass in ethyne were not considered, nor the C-H bond lengths. Taking these into account means the estimated bond lengths were not completely out from the accepted value.

6. Summary

The calculated moments of inertia for the ground and first excited states of ethyne are far enough apart to conclude that they are different. This is seen by comparing the lower limit of the ground state moment of inertia $\left(2428 \times 10^{-49} \mathrm{kgm}^{-2}\right)$ to the upper limit of the first excited state moment of inertia ($2418 \times 10^{-49} \mathrm{kgm}^{-2}$). This justifies the use of a quadratic fit for quantum number against transition wavenumber, as a linear fit would have led to these values being too close together to conclude they were different.

The main results are summarised in Table 1.

Quantity	Value
I_{0}	$(2344 \pm 16) \times 10^{-49} \mathrm{kgm}^{-2}$
I_{1}	$(2401 \pm 17) \times 10^{-49} \mathrm{kgm}^{-2}$
$\Delta \mathrm{I}$	$(57 \pm 24) \times 10^{-49} \mathrm{kgm}^{-2}$
r_{0}	$(153.1 \pm 0.5) \mathrm{pm}$
r_{1}	$(154.9 \pm 0.6) \mathrm{pm}$
Δr	$(1.8 \pm 0.8) \mathrm{pm}$

Table 1. Summary of key results.

References

[1] Koski, H. \& Sandor, E., "Neutron Powder Diffraction Study of the LowTemperature Phase of Solid Acetylene-d 2_{2} ", Acta Crystallog., Volume 6, Issue 16, 1975.
[2] MATLAB, Version 5, The Math Works Inc, Natick, Mass 01760.

Appendix

```
% project1.m
% Data analysis of rotational-vibrational transitions in ethyne (acetylene)
% Meirin Evans, Mar }1
% ------------------------------------------------------------------------------------------------------------------------
% --------------------------
clear all; % clear variables in workspace
close all; % close figure windlows
% ---------------------------------------------------------------------------------------------------------------
```



```
% read in data files
\begin{tabular}{ll} 
load h20.dat; & \% load h20 data file \\
load c2h2.dat; & \% load c2h2 data file
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\% locate positions of h2o peaks} \\
\hline h2oinv \(=-\mathrm{h} 20\); & \% invert h2o spectrum \\
\hline [maxh, maxloc] = findpeaks(h2o, 'MinPeakProminence', 0.3); & \% max, only peaks 0.3 over average \\
\hline [minh, minloc] = findpeaks(h2oinv, 'MinPeakProminence', 0.3); & \% min \\
\hline \(\mathbf{l o c s}=(\operatorname{maxloc}+\boldsymbol{\operatorname { m i n l o c }}) / \mathbf{2}\) & \(\%\) centre point between \(\max \& \min\) \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\% plot h2o spectrum} \\
\hline \multirow[t]{2}{*}{fig1 = figure;} & \% separate \\
\hline & figure window \\
\hline u1 = fig1.Name; & \% handle \\
\hline \multirow[t]{2}{*}{fig1.Name = 'water spectrum';} & \% rename \\
\hline & figure window \\
\hline \multirow[t]{2}{*}{plot(h20(1:length(h20)), 'g'); grid} & \% plot in green with \\
\hline & \\
\hline xlabel('Channel number'); & \% x axis label \\
\hline ylabel('Peak derivative (V)'); & \% y axis labe \\
\hline title('H_2O spectrum: peak \& trough channel number labelled'); & \% figure title \\
\hline
\end{tabular}
```

x $\mathbf{l i m}([0$ length(h2o)+1]);	\% set x axis
	limits
$\mathbf{y l i m}([\min (\mathrm{h} 20)-0.1 \max (\mathrm{~h} 20)+0.1])$;	\% set y axis
	limits
text(maxloc, maxh, [num2str(maxloc)]);	\% label max-
	ima
text(minloc, -minh, [num2str(minloc)]);	\% label min-
	ima
print('Fig1 water spectrum', '-dpng');	\% save figure
	as png
\%	
\%	
\% least squares fit for h20	
wavenum = [1268378.2; 1268554.0; 1268576.9; 1268706.6];	\% wavenumbers for h2o peaks
[cal, scal] = polyfit(wavenum, locs, 1);	\% linear fit for cali-
fig2 = figure;	\% separate figure window
$\begin{aligned} & \mathbf{u 2} \text { = fig2.Name; } \\ & \text { fig2.Name }=\text { 'water calibration'; } \end{aligned}$	\% handle
	\% rename figure
errorbar(wavenum, locs, (1/sqrt(2))*ones(size(locs)));	bars in blue
xlabel('Wavenumber (m^-^1)');	\% x axis label
ylabel('Channel number');	\% y axis label
title('H_2O calibration');	\% figure title
xlim([min(wavenum)-10 max(wavenum)+10]);	\% set x axis limits
ylim([min(locs)-30 max(locs)+20]);	\% set y axis limits
for $\mathrm{n}=1: 4$	\% start of for loop
if $\mathrm{n}<4$	\% start of if statement
text(wavenum(n), locs(n), ['(', num2str(wavenum(n)), ', ', num2str(locs(n)), ')']);	
	\% label points
elsetext(wavenum(n),locs(n),['(',	\% last point
	num2str(locs(n)), ')'],
'HorizontalAlignment', 'right');	\% label point with
	line to right of text
end	\% end if statement
end	\% end for loop
print('Fig2 water calibration', '-dpng');	\% save figure as png


```
% plot channel number against quantum number
mk=[3;4; 5; 6; 7];
fig5 = figure;
fig5.Name = 'quantum v channel number';
u5 = fig5.Name;
errorbar(mk, locse, (1/sqrt(2))*ones(size(mk)), 'k-'); grid
xlabel('quantum number m');
ylabel('Channel number');
title('quantum number m against channel number');
xlim([mmin(mk)-0.1 max(mk)+0.1]);
ylim([min(locsc)-40 max(locsc)+40]);
text(mk, locsc, [num2str(locse)]);
print('Fig5 quantum v channel number', '-dpng');
% ------------------------------------
[p, sp] = polyfit(mk, locsc, 1);
fitp = polyval(p,mk);
resid1 = locsc - fitp;
covm1 = sqrt(2)*inv(sp.R)*inv(sp.R)';
errp1 = sqrt(covm1(1,1));
errp2 = sqrt(covm1(2,2));
fig6 = figure;
u6 = fig6.Name;
fig6.Name = 'linear fit residuals';
errorbar(mk, locsc-fitp, (1/sqrt(2))*ones(size(locsc)), 'r+'); grid
xlabel('quantum number m');
```

\% linear fit
$\%$ column
vector for lin-
ear data
\% residuals
for linear fit
\% covariance
matrix for
linear fit
\% error on
linear gradi-
ent
\% error on
linear inter-
cept
\% new figure
\% handle
\% rename
figure
\% plot error
bars in red
with grid
\% x axis label

ylim([min(locsc-fitq)-1/sqrt(2)-0.1 $\max (\mathbf{l o c s c}$-fitq) $\operatorname{print}(' \operatorname{Fig} 7$ quadratic fit residuals', '-dpng');	\% set y axis limits \% save figure as png
\% chi squared for c2h2	
\% linear chisqup $=0$;	\% start chi squared sum at 0
$\begin{aligned} & \text { for } n p=1: 5 ; \\ & \quad \text { doversigmasqup }(n p)=\left(\operatorname{resid} 1(n p)^{*} \operatorname{sqrt}(2)\right)^{\wedge} 2 \end{aligned}$	\% loop over 5 values $\%$ single value of chi squared, error on maxloc is 1
```chisqup = doversigmasqup(np) + chisqup; end disp('Residuals for linear fit are in variable resid1');```	\% linear chi squared   \% end for loop   \% display where residuals held
\% quadratic chisquq $=0$;	\% start chi squared sum at 0
$\begin{aligned} & \text { for } \mathrm{nq}=1: 5 ; \\ & \quad \text { doversigmasquq }(\mathrm{nqq})=\left(\operatorname{resid} 2(\mathrm{nq}) *{ }^{*} \mathrm{sqrt}(2)\right)^{\wedge} 2 \end{aligned}$	\% loop over 5 values $\%$ single value of chi squared, error on maxloc is 1
chisquq $=$ doversigmasquq(nq) + chisquq;	\% quadratic chi squared
end	\% end for loop
disp('Residuals for quadratic fit are in variable resid2')	\% display where residuals held
disp('Values in resid2 are smaller than those in resid1 th	refore quadratic fit is
used');	$\%$ tell user which fit used
$\begin{aligned} & \text { disp('resid2 ='); } \\ & \text { disp(resid2); } \end{aligned}$	\% display resid2

```
% ---
% C
```



```
% B
kB=q(2)/cal(1);
B=kB*6.626e-34*3e+8;
sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(errq2 ^2 + (B*errcal1)^2);
% convert
channel num-
ber to
wavenumber
% convert
wavenumber
to energy
% error on B
```



```
%
% find moments of inertia
I0 =((6.626e-34)^2)/((B-C)*4*\mathbf{pi^2); % % ground state moment of inertia}
I1 = ((6.626e-34)^2)/((B+C)*4*\mathbf{pi^2}); % excited state moment of inertia
L0 = 2*\mathbf{sqrt(I0/(2*12*1.667e-27)); % estimate C-C unstretched bonndllength}
L1 = 2*sqrt(I1/(2*12*1.667e-27)); % estimate C-C stretched bondl length
compare0=120.3e-12-L0; % compare L0 to known value
compare1=120.3e-12-L1; % compare L1 to known value
%
% estimate errors on moments of inertia
sigmaI0 = ((6.626e-34/(2*pi*(B-C)))^2)*sqrt(sigmaB^2 + sigmaC^2); % error on I0
sigmaI1 = ((6.626e-34/(2*pi*(B+C)))^2)*sqrt(sigmaB^2 + sigmaC^2); % error on I1
\% calculate difference in moments of inertia
```

```
deltaI = I1-I0;
```

deltaI = I1-I0;
deltaL=L1-L0; % amount of stretching

```
deltaL=L1-L0; % amount of stretching
```

```
% consider accuracy of difference in moments of inertia
```

sigmadeltaI $=\mathbf{s q r t}($ sigmaI0^2 + sigmaI1^2);
\% print results
fprintf('Ground state moment of inertia $\mathbf{I 0}=\% 3.2 \mathrm{e}+/-\% 1.0 \mathrm{e} \backslash \mathrm{n}$ ', $\mathbf{I 0}$, sigmaI0);
fprintf('1st excited state state moment of inertia I1 = \%3.2e +/- \%1.0e\n', I1, sig-
maI1);
fprintf('Difference in moments of inertia deltaI $=\% 1.0 \mathrm{e}+/-\% 1.0 \mathrm{e} \backslash \mathrm{n}$ ', deltaI, sig-
madeltal);

\% ----------------------------
sigmaovermean $=\operatorname{sqrt}(1.381 \mathrm{e}-23 * 300 /(18 * 1.661 \mathrm{e}-27 * 9 \mathrm{e} 16)$ );
sigma $=$ sigmaovermean.*wavenum;

The number of words in this document is 1481 .

This document was last saved on 7/3/2016 at 13:24.

