Rotation-vibration transitions in ethyne

Meirin Evans 9214122

School of Physics and Astronomy The University of Manchester

Second Year Laboratory Report

Mar 2016

Abstract

Through measurements with a spectrometer, the rotation-vibration energy spectra of water and ethyne (acetylene) were obtained. Water was used as calibration and the ethyne spectrum was studied to determine the moments of inertia of its ground and first excited states. The measured ground state moment of inertia was $(2344 \pm 16) \times 10^{-49}$ kgm⁻², whereas $(2401 \pm 17) \times 10^{-49}$ kgm⁻² was obtained for the first excited state. The results' accuracies were limited by the accuracy in determining the spectral peaks' widths.

1. Introduction

Materials such as water and ethyne (acetylene), C_2H_2 , absorb specific radiation wavelengths corresponding to rotational-vibrational energy state transitions. These transitions are quantised and thus are seen as spectral peaks. Measuring the spectroscopic wavenumbers, k, of these peaks allows identification of the transitions. Molecular vibrations can be quantified by the moment of inertia, I, which may be calculated from the transition energies. Knowing the moment of inertia allows calculation of bond length, as the moment of inertia of a rotating mass, m, is given by

$$I = mr^2 \tag{1}$$

where r is the distance of the mass from the rotation centre.

2. Theory

The spectrometer used in this experiment was a differential spectrometer, therefore when channel number is plotted against spectrometer output, minima occur at the start of a transition peak, whilst maxima occur at the end. This is why sharp differential peaks will be seen rather than wider transition peaks. The spectrometer applies a bias voltage of 5V, making 5V the effective 0. The midpoint between maxima and minima in plots such as Figure 1 gives the channel number of the transition peak centre.

Fig 1. Water spectrum. The channel numbers of the maxima and minima are labelled. Water has 4 transitions peaks and other fluctuation about 5V is noise.

Knowing the relationship between channel number and wavenumber allows conversion to find transition wavenumber. Each transition peak is associated with a quantum number. Knowing the relationship between transition wavenumber and quantum number allows calculation of moment of inertia. If this relationship is linear the moments of inertia of the ground and first excited states of a molecule are the same, *I*, given by

$$I = \frac{h^2}{4\pi^2 B}$$
(2)

where *B* is the linear gradient and h is Planck's constant (6.626×10^{-34} Js). If the relationship between wavenumber and quantum number is quadratic the moments of inertia of the ground and first excited states are different, given by

$$I_0 = \frac{h^2}{4\pi^2 (B+C)}$$
(3)

and

$$I_1 = \frac{h^2}{4\pi^2 (B - C)},$$
 (4)

where I_0 and I_1 are the ground and first excited states moment of inertia respectively and *B* and *C* are the linear and quadratic coefficients of the relationship respectively.

For use in Equations 2, 3 and 4 the values of B and C are converted from wavenumber to energy, E, using

$$E = hck \tag{5}$$

where c is the speed of light $(3 \times 10^8 \text{ ms}^{-1})$. Since the masses in ethyne are dominated by carbon, Equation 1 allows estimation of the ethyne C=C bond length, with a known value of 118 pm [1].

The fact that maxima and minima in plots such as Figure 1 are different means the transition peak has broadened. One cause for this may be Doppler broadening, giving a peak width of

$$\sigma = 2k_0 \sqrt{\frac{k_B T}{Mc^2}}$$
(6)

where k_0 is the wavenumber of the midpoint between maxima and minima, k_B is Boltzmann's constant (1.381 × 10⁻²³ JK⁻¹), *T* is the temperature at which measurements are made and *M* is the mass of a molecule. Doppler broadening is a result of the motion of the molecule relative to an observer.

3. Experimental method

Water has known transition wavenumbers therefore was used to calibrate ethyne data. Plotting the midpoint channel number against these wavenumbers gave a linear relationship between these variables, as shown in Figure 2. To test whether the relationship between quantum number and transition wavenumber was quadratic or linear the data was fitted to both and the χ^2 values were compared. This was implemented in a MATLAB [2] script.

Fig 2. Water calibration. The known wavenumbers for water are plotted against the midpoint of the maxima and minima from Figure 1 to obtain the relationship between channel number and wavenumber. Each point is labelled with wavenumber and channel number.

The wavenumber range used was 939.4 m⁻¹, inverting gave a wavelength range of 0.0011 m. The mid-range wavenumbers and wavelength were 1268698.4 m⁻¹ and 788 nm respectively. Using the calibration from Figure 2, the wavenumber step size was 0.52 m⁻¹.

4. Results

The relationship between wavenumber and channel number was found to be linear, as expected, with the residuals shown in Figure 3. Ethyne's spectrum is shown in Figure 4, where five transitions are seen.

Fig 3. Calibration residuals. The transition wavenumbers are plotted against the difference between measured and fitted channel number. The residuals are sufficiently small (given that the channel number range is 1-1801) to conclude that a linear fit is suitable. The wavenumbers of each transition are labelled.

Fig 4. Ethyne spectrum. As Figure 1 but for ethyne rather than water. 5

Fig 5. A plot of quantum number against transition channel numbers. The channel numbers for each of of ethyne's five transitions are labelled.

Figure 5 does not show whether the relationship between quantum number and transition channel number is linear or quadratic therefore the residuals for both are shown in Figure 6. Since the quadratic gave a better fit than the linear, the quadratic was used. Its *B* and *C* values were $(4680 \pm 30) \times 10^{-26}$ J and $(-57 \pm 3) \times 10^{-26}$ J respectively.

Fig 6. Left are the residuals for a linear relationship between quantum number and transition channel number. Right is the same but quadratic rather than linear. On the x axis is quantum number whilst on the y is the difference between the measured and fitted channel numbers for ethyne's five transitions. The y axes on both plots are different.

 I_0 and I_1 were calculated as $(2344 \pm 16) \times 10^{-49}$ kgm⁻² and $(2401 \pm 17) \times 10^{-49}$ kgm⁻² respectively, giving a difference, ΔI , of $(57 \pm 24) \times 10^{-49}$ kgm⁻² through adding errors in quadrature. Equation 1 estimates the ground state bond length, r_0 , as (153.1 ± 0.5) pm and the first excited state bond length, r_1 , as (154.9 ± 0.6) pm, giving a stretching, Δr , of (1.8 ± 0.8) pm.

5. Discussion

The error assigned to the value of a maximum or minimum was ± 0.5 channel numbers as only integer channel numbers were available. The reduced- χ^2 from Figure 2 was 0.8, confirming the validity of a linear fit between wavenumber and channel number and the suitability of the error value. The reduced- χ^2 of the linear fit was 278.78, whilst the quadratic fit value was 0.105, meaning the quadratic fit was used. The reduced- χ^2 for the quadratic fit was slightly small, suggesting a slight overestimate in errors. However, a higher error value could not be fully justified without extra channel numbers in between those used in this experiment. In calculating errors on the moments of inertia the calibration intercept was not used, as it was insignificant compared to other errors.

Using an approximate room temperature of 300K in Equation 6, σ for water was 3.04 channel numbers. Comparing this with the typical differences between maxima and minima in Figure 1 of seven or eight shows that Doppler broadening cannot be solely responsible for peak width, but was a contributing factor. Other contributors may have been spectrometer instrumental error, such as diffraction.

The estimated bond lengths are different to the true value because the hydrogen atom mass in ethyne were not considered, nor the C-H bond lengths. Taking these into account means the estimated bond lengths were not completely out from the accepted value.

6. Summary

The calculated moments of inertia for the ground and first excited states of ethyne are far enough apart to conclude that they are different. This is seen by comparing the lower limit of the ground state moment of inertia $(2428 \times 10^{-49} \text{ kgm}^{-2})$ to the upper limit of the first excited state moment of inertia $(2418 \times 10^{-49} \text{ kgm}^{-2})$. This justifies the use of a quadratic fit for quantum number against transition wavenumber, as a linear fit would have led to these values being too close together to conclude they were different.

The main results are summarised in Table 1.

Quantity	Value
I_0	$(2344 \pm 16) \times 10^{-49} \mathrm{kgm^{-2}}$
I_1	$(2401 \pm 17) \times 10^{-49} \mathrm{kgm^{-2}}$
ΔΙ	$(57 \pm 24) \times 10^{-49} \mathrm{kgm^{-2}}$
ro	$(153.1 \pm 0.5) \text{ pm}$
r_1	$(154.9 \pm 0.6) \text{ pm}$
∆r	$(1.8 \pm 0.8) \text{ pm}$

Table 1. Summary of key results.

References

[1] Koski, H. & Sandor, E., "Neutron Powder Diffraction Study of the Low-Temperature Phase of Solid Acetylene-d₂", *Acta Crystallog.*, Volume 6, Issue 16, 1975.

[2] MATLAB, Version 5, The Math Works Inc, Natick, Mass 01760.

Appendix

% project1.m		
× •	is of rotational-vibrational transitions in ethyne (ace	tvlene)
% Meirin Eva		
%		
% clear previo		
	% clear variables in workspace	
	% close figure windows	
% 0		
0/0		
% read in data		
load h2o.dat;	% load h2o data file	
load c2h2.dat;	% load c2h2 data file	
%		
	ons of h2o peaks	
h2oinv = -h2o;		% invert h2o
[]]].		spectrum
[maxn, maxloc] = findpeaks(h2o, 'MinPeakProminence', 0.3);	% max, only
		peaks 0.3 over
[minh minloc]	= findpeaks(h2oinv, 'MinPeakProminence', 0.3);	average % min
locs = (maxloc		% centre
ioes – (maxioe	1 mmoc)/2,	point between
		max & min
%		
%		
% plot h2o spe	ctrum	
fig1 = figure;		% separate
		figure window
u1 = fig1.Name		% handle
fig1.Name = 'w	ater spectrum';	% rename
		figure window
plot(h2o(1:leng	th(h2o)), 'g'); grid	% plot in
		green with
wlabal((Char	l number).	grid
xlabel('Channe		% x axis label
ylabel('Peak de		% y axis label % figure title
une(n_20 spe	cctrum: peak & trough channel number labelled');	70 figure title

<pre>xlim([0 length(h2o)+1]);</pre>	% set x axis limits
ylim([min(h2o)-0.1 max(h2o)+0.1]);	% set y axis limits
<pre>text(maxloc, maxh, [num2str(maxloc)]);</pre>	% label max- ima
<pre>text(minloc, -minh, [num2str(minloc)]);</pre>	% label min- ima
<pre>print('Fig1 water spectrum', '-dpng');</pre>	% save figure
%	as png

% -----

% least squares fit for h20	
wavenum = [1268378.2; 1268554.0; 1268576.9; 1268706.6];	% wavenumbers for
	h2o peaks
[cal, scal] = polyfit(wavenum, locs, 1);	% linear fit for cali-
	bration
fig2 = figure;	% separate figure
	window
u2 = fig2.Name;	% handle
fig2.Name = 'water calibration';	% rename figure
	window
errorbar(wavenum, locs, (1/sqrt(2))*ones(size(locs)));	% plot with error
	bars in blue
xlabel('Wavenumber (m^-^1)');	% x axis label
ylabel('Channel number');	% y axis label
title('H_2O calibration');	% figure title
<pre>xlim([min(wavenum)-10 max(wavenum)+10]);</pre>	% set x axis limits
ylim([min(locs)-30 max(locs)+20]);	% set y axis limits
for n = 1:4	% start of for loop
if n < 4	% start of if state-
	ment
<pre>text(wavenum(n), locs(n), ['(', num2str(wavenum(n)), ',</pre>	', num2str(locs(n)), ')']);
	% label points
else	% last point
<pre>text(wavenum(n), locs(n), ['(', num2str(wavenum(n)), ',</pre>	', num2str(locs(n)), ')'],
'HorizontalAlignment', 'right');	% label point with
	line to right of text
end	% end if statement
end	% end for loop
<pre>print('Fig2 water calibration', '-dpng');</pre>	% save figure as png
°⁄ ₀	

%	
% calibration residuals fit	
locsfit = polyval(cal, wavenum);	% fitted data
fig3 = figure;	% new figure
u3 = fig3.Name;	% handle
fig3.Name = 'water calibration residuals';	% name fig-
	ure
errorbar(wavenum, locs-locsfit, (1/sqrt(2))*ones(size(locs)), 'y+');	grid % plot with
	error bars in
	yellow
xlabel('Wavenumber (m^-^1)');	% x axis label
ylabel('measured - fitted channel number');	% y axis label
title('H_2O calibration residuals');	% figure title
xlim([min(wavenum)-10 max(wavenum)+10]);	% set x axis
	limits
ylim([min(locs-locsfit)-1/sqrt(2)-0.1 max(locs-locsfit)+1/sqrt(2)+0.1	l]); % set y axis
	limits
text(wavenum, locs-locsfit, [num2str(wavenum)]);	% label max-
	ima
print('Fig3 water calibration residuals', '-dpng');	% save figure
	as png
%	
%	
% Physics calculations	
datarange = length(h2o)/cal(1) - 1/cal(1); %	calculate
W٤	wenumber range

wavrange = 1/datara	nge;
---------------------	------

% calculate
wavenumber range
% calculate wave-
length range
% calculate mid
range wavenumber
% calculate mid
range wavelength
% channel step size

step = 2/cal(1) - 1/cal(1); %

º⁄₀	
% chi squared for h2o	
covmcal = sqrt(2)*inv(scal.R)*inv(scal.R)';	% covariance matrix for calibra-
	tion
errcal1 = sqrt(covmcal(1,1));	% error on calibration gradient
errcal2 = sqrt(covmcal(2,2));	% error on calibration intercept
chisqu = 0;	% start chi squared sum at 0

midrangewavenum = (length(h2o) - 2*cal(2) + 1)/(2*cal(1));

midrangewavelen = 1/midrangewavenum;

for n = 1:4; % loop over 4 value d(n) = cal(1)*wavenum(n) + cal(2) - locs(n); % deviation of point line doversigmasqu(n) = (d(n)/sqrt(0.5))^2; % single value of claror on maxloc is 1 chisqu = doversigmasqu(n) + chisqu; % chi squared end % end for loop		nt from linear fit hi squared, er	
%		% invert c2h2 spectrum % max, only peaks 0.4 over	
<pre>[minc, minlocc] = findpeaks(c2h2inv, 'MinPeakl locsc = (maxlocc + minlocc)/2;</pre>		average % min % centre point between max & min	
%		% separate figure window % rename figure window % handle % plot in ma- genta with	
<pre>xlabel('Channel number'); ylabel('Peak derivative (V)'); title('C_2H_2 spectrum: peak & trough channel xlim([0 length(c2h2)+1]); ylim([min(c2h2)-0.1 max(c2h2)+0.1]);</pre>	number labelled');	grid % x axis label % y axis label % figure title % set x axis limits % set y axis limits	
<pre>text(maxlocc, maxc, [num2str(maxlocc)]); text(minlocc, -minc, [num2str(minlocc)]); print('Fig4 ethyne spectrum', '-dpng'); %</pre>		% label max- ima % label min- ima % save figure as png	

%	
% plot channel number against quantum number	
mk = [3; 4; 5; 6; 7];	% quantum numbers
fig5 = figure;	% separate figure
	window
fig5.Name = 'quantum v channel number';	% rename figure
ngon tame quantum v channel number ;	window
u5 = fig5.Name;	% handle
errorbar(mk, locsc, (1/sqrt(2))*ones(size(mk)), 'k-'); grid	% plot in black with
errorbar(mk, rocsc, (1/sqrt(2))) ones(size(mk)), k-), grid	-
	grid
xlabel('quantum number m');	% x axis label
ylabel('Channel number');	% y axis label
title('quantum number m against channel number');	% figure title
xlim([min(mk)-0.1 max(mk)+0.1]);	% set x axis limits
ylim([min(locsc)-40 max(locsc)+40]);	% set y axis limits
<pre>text(mk, locsc, [num2str(locsc)]);</pre>	% label wavenum-
	bers
print('Fig5 quantum v channel number', '-dpng');	% save figure as png
%	
%	
% try linear fit	
<pre>[p, sp] = polyfit(mk, locsc, 1);</pre>	% linear fit
fitp = polyval(p, mk);	% column
	vector for lin-
	ear data
resid1 = locsc - fitp;	% residuals
	for linear fit
covm1 = sqrt(2)*inv(sp.R)*inv(sp.R)';	% covariance
	matrix for
	linear fit
errp1 = sqrt(covm1(1,1));	% error on
	linear gradi-
	ent
errp2 = sqrt(covm1(2,2));	% error on
crr_{p2} sqr(($\operatorname{covmr}_{(2,2)}$),	linear inter-
figh - figures	cept
fig6 = figure;	% new figure
u6 = fig6.Name;	% handle
fig6.Name = 'linear fit residuals';	% rename
	figure
errorbar(mk, locsc-fitp, (1/sqrt(2))*ones(size(locsc)), 'r+'); grid	-
	bars in red
	with grid
xlabel('quantum number m');	% x axis label

ylabel('measured - fitted channel number');	% y axis label
title('linear fit residuals');	% figure title
xlim([min(mk)-0.1 max(mk)+0.1]);	% set x axis
	limits
ylim([min(locsc-fitp)-1/sqrt(2)-0.5 max(locsc-fitp)+1/sqrt(2)+0.5]);	% set y axis
	limits
print('Fig6 linear fit residuals', '-dpng');	% save figure
	as png
%	

%	
% try quadratic fit	
[q, sq] = polyfit(mk, locsc, 2);	% quadratic
	fit
fitq = polyval(q, mk);	% column
	vector for
	quadratic
	data
resid2 = locsc - fitq;	% residuals
	for quadratic
	fit
covm2 = sqrt(2)*inv(sq.R)*inv(sq.R)';	% covariance
	matrix for
	calibration
errq1 = sqrt(covm2(1,1));	% error on
	quadratic 2nd
	order term
errq2 = sqrt(covm2(2,2));	% error on
	quadratic
	gradient
errq3 = sqrt(covm2(3,3));	% error on
	quadratic in-
	tercept
fig7 = figure;	% separate
	figure window
fig7.Name = 'quadratic fit residuals';	% rename
and a second sec	figure window
u7 = fig7.Name;	% handle
errorbar(mk, locsc-fitq, (1/sqrt(2))*ones(size(locsc)), '+'); grid	% plot with
(11010ar(1100) + 7)	error bars in
	blue
xlabel('quantum number m');	% x axis label
vlabel('measured - fitted channel number');	% y axis label
itle('quadratic fit residuals');	% figure title
	% set x axis
klim([min(mk)-0.1 max(mk)+0.1]);	
	limits

ylim([min(locsc-fitq)-1/sqrt(2)-0.1 max(locsc-fitq)+1/sqrt(2)+0.1]);		% set y axis limits
<pre>print('Fig7 quadratic fit residuals', '-dpng');</pre>		% save figure as png
%		
%		
% chi squared for c2h2 % linear		
chisqup = 0;		squared sum at
for np = 1:5;	0 % loop over	· 5 values
<pre>doversigmasqup(np) = (resid1(np)*sqrt(2))^2;</pre>	% single val	
chisqup = doversigmasqup(np) + chisqup;	% linear chi squared	
end	% end for lo	•
disp('Residuals for linear fit are in variable resid1');	% display where residuals held	
% quadratic		
chisquq = 0;	% st	art chi squared
	sum	· · · · ·
for nq = 1:5;	% lo	op over 5 values
squ		ngle value of chi
		red, error on
abisana – dovorsigmosana(na) + abisana.		oc is 1 1adratic chi
chisquq = doversigmasquq(nq) + chisquq; % q squa		
end		id for loop
		splay where
		uals held
disp('Values in resid2 are smaller than those in resid1	therefore quad	lratic fit is
used');		ll user which fit
	used	
disp('resid2 ='); disp(resid2); %		splay resid2

°/0		
% Convert fit coefficients to energy % C		
kC = q(1)/cal(1);		% convert
1() ())		channel num
		ber to
		wavenumber
C = kC*6.626e-34*3e+8;		% convert
,		wavenumber
		to energy
sigmaC = (6.626e-34*3e+8/cal(1))*sqrt(errq1^2 + (C*errcal1)^2);	% error on C
% B		
kB = q(2)/cal(1);		% convert
		channel num
		ber to
		wavenumber
B = kB*6.626e-34*3e+8;		wavenumber % convert
B = kB*6.626e-34*3e+8;		% convert
B = kB*6.626e-34*3e+8;		% convert
B = kB*6.626e-34*3e+8; sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(4	errq2^2 + (B*errcal1)^2);	wavenumber
	errq2^2 + (B*errcal1)^2);	% convert wavenumber to energy
sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(%	errq2^2 + (B*errcal1)^2);	% convert wavenumber to energy
sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(% % find moments of inertia	- · · · · · · · · · · · · · · · · · · ·	% convert wavenumber to energy % error on B
<pre>sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(%</pre>	% ground state moment of	% convert wavenumber to energy % error on B
<pre>sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(%</pre>	% ground state moment o % excited state moment o	% convert wavenumber to energy % error on B
<pre>sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(% % % find moments of inertia I0 = ((6.626e-34)^2)/((B-C)*4*pi^2); I1 = ((6.626e-34)^2)/((B+C)*4*pi^2); L0 = 2*sqrt(I0/(2*12*1.667e-27));</pre>	% ground state moment o % excited state moment o % estimate C-C unstretch	% convert wavenumber to energy % error on B of inertia f inertia ned bond length
<pre>sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(% % %</pre>	% ground state moment o % excited state moment o % estimate C-C unstretch % estimate C-C stretched	% convert wavenumber to energy % error on B % f inertia f inertia ed bond length
<pre>sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(% %</pre>	% ground state moment of % excited state moment of % estimate C-C unstretch % estimate C-C stretched % compare L0 to known	% convert wavenumber to energy % error on E % f inertia f inertia hed bond length bond length value
sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(%	% ground state moment o % excited state moment o % estimate C-C unstretch % estimate C-C stretched	% convert wavenumber to energy % error on B % f inertia f inertia hed bond length bond length value

% -----% calculate difference in moments of inertia deltaI = I1-I0; deltaL = L1-L0; % amount of stretching % ------

⁰ / ₀
70
sigmadeltaI = sqrt(sigmaI0^2 + sigmaI1^2);
%
%% print results
fprintf('Ground state moment of inertia I0 = %3.2e +/- %1.0e\n', I0, sigmaI0);
fprintf('1st excited state state moment of inertia I1 = %3.2e +/- %1.0e\n', I1, sig-
maI1);
fprintf('Difference in moments of inertia deltaI = %1.0e +/- %1.0e\n', deltaI, sig-
madeltaI);
·/··
%
% Doppler broadening
sigmaovermean = sqrt(1.381e-23*300/(18*1.661e-27*9e16));
sigma = sigmaovermean.*wavenum;
%

The number of words in this document is 1481.

This document was last saved on 7/3/2016 at 13:24.