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Abstract 

Through measurements with a spectrometer, the rotation-vibration energy spectra of water 
and ethyne (acetylene) were obtained.  Water was used as calibration and the ethyne spec-
trum was studied to determine the moments of inertia of its ground and first excited states.  
The measured ground state moment of inertia was (2344 ± 16) ×  10-49 kgm-2, whereas 
(2401 ± 17) × 10-49 kgm-2 was obtained for the first excited state.  The results’ accuracies 
were limited by the accuracy in determining the spectral peaks’ widths.  



1. Introduction 

Materials such as water and ethyne (acetylene), C2H2, absorb specific radiation wave-
lengths corresponding to rotational-vibrational energy state transitions. These transitions 
are quantised and thus are seen as spectral peaks.  Measuring the spectroscopic 
wavenumbers, k,  of these peaks allows identification of the transitions.  Molecular vibra-
tions can be quantified by the moment of inertia, I, which may be calculated from the 
transition energies.  Knowing the moment of inertia allows calculation of bond length, as 
the moment of inertia of a rotating mass, m, is given by    

! , 

where r is the distance of the mass from the rotation centre. 

2. Theory 

The spectrometer used in this experiment was a differential spectrometer, therefore when 
channel number is plotted against spectrometer output, minima occur at the start of a tran-
sition peak, whilst maxima occur at the end.  This is why sharp differential peaks will be 
seen rather than wider transition peaks.  The spectrometer applies a bias voltage of 5V, 
making 5V the effective 0.  The midpoint between maxima and minima in plots such as 
Figure 1 gives the channel number of the transition peak centre.   
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Fig 1.  Water spectrum.  The channel numbers of the maxima and minima are labelled.  Water has 4 
transitions peaks and other fluctuation about 5V is noise. 



Knowing the relationship between channel number and wavenumber allows conversion to 
find transition wavenumber.  Each transition peak is associated with a quantum number.  
Knowing the relationship between transition wavenumber and quantum number allows 
calculation of moment of inertia.  If this relationship is linear the moments of inertia of 
the ground and first excited states of a molecule are the same, I, given by 

! , 

where B is the linear gradient and h is Planck’s constant (6.626 × 10-34 Js).  If the relation-
ship between wavenumber and quantum number is quadratic the moments of inertia of the 
ground and first excited states are different, given by 

!  
and  

! , 

where I0 and I1 are the ground and first excited states moment of inertia respective-
ly and B and C are the linear and quadratic coefficients of the relationship respectively.   

For use in Equations 2, 3 and 4 the values of B and C are converted from wavenumber to 
energy, E, using  

! , 

where c is the speed of light (3 × 108 ms-1).  Since the masses in ethyne are dominated by 
carbon, Equation 1 allows estimation of the ethyne C≡C bond length, with a known value 
of 118 pm [1]. 

The fact that maxima and minima in plots such as Figure 1 are different means the transi-
tion peak has broadened.  One cause for this may be Doppler broadening, giving a peak 
width of  

! , 

where k0 is the wavenumber of the midpoint between maxima and minima, kB is Boltz-
mann’s constant (1.381 ×  10-23 JK-1), T is the temperature at which measurements are 
made and M is the mass of a molecule.  Doppler broadening is a result of the motion of 
the molecule relative to an observer. 
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3. Experimental method 

Water has known transition wavenumbers therefore was used to calibrate ethyne data.  
Plotting the midpoint channel number against these wavenumbers gave a linear relation-
ship between these variables, as shown in Figure 2.  To test whether the relationship be-
tween quantum number and transition wavenumber was quadratic or linear the data was 
fitted to both and the χ2 values were compared.  This was implemented in a MATLAB [2] 
script. 

The wavenumber range used was 939.4 m-1, inverting gave a wavelength range of   
0.0011 m.  The mid-range wavenumbers and wavelength were 1268698.4 m-1 and 788 nm 
respectively.  Using the calibration from Figure 2, the wavenumber step size was 0.52 m-1.  

4. Results 

The relationship between wavenumber and channel number was found to be linear, as ex-
pected, with the residuals shown in Figure 3.  Ethyne’s spectrum is shown in Figure 4, 
where five transitions are seen. 

!4

Fig 2.  Water calibration.  The known wavenumbers for water are plotted against the midpoint of the 
maxima and minima from Figure 1 to obtain the relationship between channel number and wavenumber.  
Each point is labelled with wavenumber and channel number. 
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Fig 3.  Calibration residuals.  The transition wavenumbers are plotted against the difference between 
measured and fitted channel number.  The residuals are sufficiently small (given that the channel number 
range is 1-1801) to conclude that a linear fit is suitable.  The wavenumbers of each transition are labelled.

Fig 4.  Ethyne spectrum.  As Figure 1 but for ethyne rather than water.



Figure 5 does not show whether the relationship between quantum number and transition 
channel number is linear or quadratic therefore the residuals for both are shown in Figure 
6.  Since the quadratic gave a better fit than the linear, the quadratic was used.  Its B and C 
values were (4680 ± 30) × 10-26 J and (−57 ± 3) × 10-26 J respectively.  
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Fig 5.  A plot of quantum number against transition channel numbers.  The channel numbers for each of  
of ethyne’s five transitions are labelled.

Fig 6.  Left are the residuals for a linear relationship between quantum number and transition channel 
number.  Right is the same but quadratic rather than linear.  On the x axis is quantum number whilst on the 
y is the difference between the measured and fitted channel numbers for ethyne’s five transitions.  The y 
axes on both plots are different.



I0 and I1 were calculated as (2344 ± 16) ×  10-49 kgm-2 and (2401 ± 17) ×  10-49 kgm-2 re-
spectively, giving a difference, ΔI, of (57 ± 24) ×  10-49 kgm-2 through adding errors in 
quadrature.  Equation 1 estimates the ground state bond length, r0, as (153.1 ± 0.5) pm 
and the first excited state bond length, r1, as (154.9 ± 0.6) pm, giving a stretching, Δr, of 
(1.8 ± 0.8) pm.  

5. Discussion 

The error assigned to the value of a maximum or minimum was ± 0.5 channel numbers as 
only integer channel numbers were available.  The reduced-χ2 from Figure 2 was 0.8, con-
firming the validity of a linear fit between wavenumber and channel number and the suit-
ability of the error value.  The reduced-χ2 of the linear fit was 278.78, whilst the quadratic 
fit value was 0.105, meaning the quadratic fit was used.  The reduced-χ2 for the quadratic 
fit was slightly small, suggesting a slight overestimate in errors.  However, a higher error 
value could not be fully justified without extra channel numbers in between those used in 
this experiment.  In calculating errors on the moments of inertia the calibration intercept 
was not used, as it was insignificant compared to other errors. 

Using an approximate room temperature of 300K in Equation 6, σ for water was 3.04 
channel numbers.  Comparing this with the typical differences between maxima and min-
ima in Figure 1 of seven or eight shows that Doppler broadening cannot be solely respon-
sible for peak width, but was a contributing factor.  Other contributors may have been 
spectrometer instrumental error, such as diffraction. 

The estimated bond lengths are different to the true value because the hydrogen atom 
mass in ethyne were not considered, nor the C-H bond lengths.  Taking these into account 
means the estimated bond lengths were not completely out from the accepted value. 

6. Summary 

The calculated moments of inertia for the ground and first excited states of ethyne are far 
enough apart to conclude that they are different.  This is seen by comparing the lower lim-
it of the ground state moment of inertia (2428 × 10-49 kgm-2) to the upper limit of the first 
excited state moment of inertia (2418 × 10-49 kgm-2).  This justifies the use of a quadratic 
fit for quantum number against transition wavenumber, as a linear fit would have led to 
these values being too close together to conclude they were different. 

The main results are summarised in Table 1. 
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Quantity Value

I0 (2344 ± 16) × 10-49 kgm-2

I1 (2401 ± 17) × 10-49 kgm-2

ΔI (57 ± 24) × 10-49 kgm-2

r0 (153.1 ± 0.5) pm

r1 (154.9 ± 0.6) pm

Δr (1.8 ± 0.8) pm
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Table 1.  Summary of key results.



Appendix 

% project1.m 
% Data analysis of rotational-vibrational transitions in ethyne (acetylene) 
% Meirin Evans, Mar 16 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% clear previous work 
clear all;   % clear variables in workspace 
close all;   % close figure windows 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% read in data files 
load h2o.dat;   % load h2o data file 
load c2h2.dat;  % load c2h2 data file 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% locate positions of h2o peaks 
h2oinv = -h2o;                                                      % invert h2o  
          spectrum 
[maxh, maxloc] = findpeaks(h2o, 'MinPeakProminence', 0.3);   % max, only  
          peaks 0.3 over 
          average 
[minh, minloc] = findpeaks(h2oinv, 'MinPeakProminence', 0.3);    % min 
locs = (maxloc + minloc)/2;                                         % centre  
          point between 
          max & min 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% plot h2o spectrum 
fig1 = figure;                                                      % separate  
          figure window 
u1 = fig1.Name;                                                     % handle 
fig1.Name = 'water spectrum';                                      % rename  
          figure window 
plot(h2o(1:length(h2o)), 'g'); grid                                % plot in  
          green with  
          grid 
xlabel('Channel number');                                          % x axis label 
ylabel('Peak derivative (V)');                                      % y axis label 
title('H_2O spectrum: peak & trough channel number labelled');   % figure title 
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xlim([0 length(h2o)+1]);                                            % set x axis  
          limits 
ylim([min(h2o)-0.1 max(h2o)+0.1]);                                 % set y axis  
          limits 
text(maxloc, maxh, [num2str(maxloc)]);                             % label max- 
          ima 
text(minloc, -minh, [num2str(minloc)]);                            % label min- 
          ima 
print('Fig1 water spectrum', '-dpng');                             % save figure 
          as png 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% least squares fit for h2o 
wavenum = [1268378.2; 1268554.0; 1268576.9; 1268706.6];  % wavenumbers for  
         h2o peaks 
[cal, scal] = polyfit(wavenum, locs, 1);                                           % linear fit for cali- 
         bration 
fig2 = figure;                                                                                     % separate figure  
         window 
u2 = fig2.Name;                                                                                % handle 
fig2.Name = 'water calibration';                                                     % rename figure  
         window 
errorbar(wavenum, locs, (1/sqrt(2))*ones(size(locs)));   % plot with error  
         bars in blue 
xlabel('Wavenumber (m^-^1)');                                                      % x axis label 
ylabel('Channel number');                                                               % y axis label 
title('H_2O calibration');                                                                 % figure title 
xlim([min(wavenum)-10 max(wavenum)+10]);                             % set x axis limits 
ylim([min(locs)-30 max(locs)+20]);                                                 % set y axis limits 
for n = 1:4                                                                                          % start of for loop 
    if n < 4                                                                                            % start of if state- 
         ment 
        text(wavenum(n), locs(n), ['(', num2str(wavenum(n)), ', ', num2str(locs(n)), ')']);                                 
         % label points 
    else                                                                                                  % last point 
        text(wavenum(n), locs(n), ['(', num2str(wavenum(n)), ', ', num2str(locs(n)), ')'], 
'HorizontalAlignment', 'right');      % label point with  
         line to right of text 
    end                                                                                                  % end if statement 
end                                                                                                      % end for loop 
print('Fig2 water calibration', '-dpng');                                         % save figure as png 
% -------------------------------------------------------------------------------------------------------- 
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% -------------------------------------------------------------------------------------------------------- 
% calibration residuals fit 
locsfit = polyval(cal, wavenum);                                               % fitted data 
fig3 = figure;                                                                  % new figure 
u3 = fig3.Name;                                                                 % handle 
fig3.Name = 'water calibration residuals';                                     % name fig- 
          ure 
errorbar(wavenum, locs-locsfit, (1/sqrt(2))*ones(size(locs)), 'y+'); grid  % plot with  
          error bars in  
          yellow 
xlabel('Wavenumber (m^-^1)');                                                  % x axis label 
ylabel('measured - fitted channel number');                                   % y axis label 
title('H_2O calibration residuals');                                           % figure title 
xlim([min(wavenum)-10 max(wavenum)+10]);                                      % set x axis  
          limits 
ylim([min(locs-locsfit)-1/sqrt(2)-0.1 max(locs-locsfit)+1/sqrt(2)+0.1]);   % set y axis  
          limits 
text(wavenum, locs-locsfit, [num2str(wavenum)]);                              % label max- 
          ima 
print('Fig3 water calibration residuals', '-dpng');                           % save figure 
          as png 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% Physics calculations 
datarange = length(h2o)/cal(1) - 1/cal(1);                       % calculate   
         wavenumber range 
wavrange = 1/datarange;                                           % calculate wave- 
         length range 
midrangewavenum = (length(h2o) - 2*cal(2) + 1)/(2*cal(1));      % calculate mid  
         range wavenumber 
midrangewavelen = 1/midrangewavenum;                            % calculate mid  
         range wavelength 
step = 2/cal(1) - 1/cal(1);                                       % channel step size 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% chi squared for h2o 
covmcal = sqrt(2)*inv(scal.R)*inv(scal.R)';           % covariance matrix for calibra- 
       tion 
errcal1 = sqrt(covmcal(1,1));                         % error on calibration gradient 
errcal2 = sqrt(covmcal(2,2));                         % error on calibration intercept 
chisqu = 0;                                            % start chi squared sum at 0 
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for n = 1:4;                                           % loop over 4 values 
    d(n) = cal(1)*wavenum(n) + cal(2) - locs(n);      % deviation of point from linear fit 
       line 
    doversigmasqu(n) = (d(n)/sqrt(0.5))^2;            % single value of chi squared, er 
       ror on maxloc is 1 
    chisqu = doversigmasqu(n) + chisqu;               % chi squared 
end                                                     % end for loop 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% locate positions of c2h2 peaks 
c2h2inv = -c2h2;                                                       % invert c2h2 
          spectrum 
[maxc, maxlocc] = findpeaks(c2h2, 'MinPeakProminence', 0.4);  % max, only  
          peaks 0.4 over 
          average 
[minc, minlocc] = findpeaks(c2h2inv, 'MinPeakProminence', 0.4);     % min 
locsc = (maxlocc + minlocc)/2;                                        % centre  
          point between 
          max & min 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% plot c2h2 spectrum 
fig4 = figure;                                                        % separate  
          figure window 
fig4.Name = 'ethyne spectrum';                                       % rename  
          figure window 
u4 = fig4.Name;                                                       % handle 
plot(c2h2(1:length(c2h2)), 'm'); grid                                % plot in ma- 
          genta with  
          grid 
xlabel('Channel number');                                            % x axis label 
ylabel('Peak derivative (V)');                                       % y axis label 
title('C_2H_2 spectrum: peak & trough channel number labelled');   % figure title 
xlim([0 length(c2h2)+1]);                                             % set x axis  
          limits 
ylim([min(c2h2)-0.1 max(c2h2)+0.1]);                                 % set y axis  
          limits 
text(maxlocc, maxc, [num2str(maxlocc)]);                            % label max- 
          ima 
text(minlocc, -minc, [num2str(minlocc)]);                            % label min- 
          ima 
print('Fig4 ethyne spectrum', '-dpng');                              % save figure 
          as png 
% -------------------------------------------------------------------------------------------------------- 
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% -------------------------------------------------------------------------------------------------------- 
% plot channel number against quantum number 
mk = [3; 4; 5; 6; 7];                                            % quantum numbers 
fig5 = figure;                                                    % separate figure  
         window 
fig5.Name = 'quantum v channel number';                         % rename figure  
         window 
u5 = fig5.Name;                                                  % handle 
errorbar(mk, locsc, (1/sqrt(2))*ones(size(mk)), 'k-'); grid   % plot in black with  
         grid 
xlabel('quantum number m');                                     % x axis label 
ylabel('Channel number');                                        % y axis label 
title('quantum number m against channel number');              % figure title 
xlim([min(mk)-0.1 max(mk)+0.1]);                                % set x axis limits 
ylim([min(locsc)-40 max(locsc)+40]);                            % set y axis limits 
text(mk, locsc, [num2str(locsc)]);                              % label wavenum- 
         bers 
print('Fig5 quantum v channel number', '-dpng');               % save figure as png 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% try linear fit 
[p, sp] = polyfit(mk, locsc, 1);                                                % linear fit 
fitp = polyval(p, mk);                                                          % column  
          vector for lin- 
          ear data 
resid1 = locsc - fitp;                                                          % residuals  
          for linear fit 
covm1 = sqrt(2)*inv(sp.R)*inv(sp.R)';                                          % covariance 
          matrix for  
          linear fit 
errp1 = sqrt(covm1(1,1));                                                       % error on  
          linear gradi- 
          ent 
errp2 = sqrt(covm1(2,2));                                                       % error on  
          linear inter- 
          cept 
fig6 = figure;                                                                  % new figure 
u6 = fig6.Name;                                                                 % handle 
fig6.Name = 'linear fit residuals';                                            % rename  
          figure 
errorbar(mk, locsc-fitp, (1/sqrt(2))*ones(size(locsc)), 'r+'); grid           % plot error 
          bars in red  
          with grid 
xlabel('quantum number m');                                                    % x axis label 
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ylabel('measured - fitted channel number');                                   % y axis label                                           
title('linear fit residuals');                                                  % figure title 
xlim([min(mk)-0.1 max(mk)+0.1]);                                               % set x axis  
          limits                                                                               
ylim([min(locsc-fitp)-1/sqrt(2)-0.5 max(locsc-fitp)+1/sqrt(2)+0.5]); % set y axis  
          limits 
print('Fig6 linear fit residuals', '-dpng');                                   % save figure 
          as png 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% try quadratic fit 
[q, sq] = polyfit(mk, locsc, 2);                                        % quadratic  
          fit 
fitq = polyval(q, mk);                                                   % column  
          vector for  
          quadratic  
          data 
resid2 = locsc - fitq;                                                   % residuals  
          for quadratic  
          fit 
covm2 = sqrt(2)*inv(sq.R)*inv(sq.R)';                                   % covariance 
          matrix for  
          calibration 
errq1 = sqrt(covm2(1,1));                                               % error on  
          quadratic 2nd 
          order term 
errq2 = sqrt(covm2(2,2));                                               % error on  
          quadratic  
          gradient 
errq3 = sqrt(covm2(3,3));                                               % error on  
          quadratic in- 
          tercept 
fig7 = figure;                                                           % separate  
          figure window 
fig7.Name = 'quadratic fit residuals';                                  % rename  
          figure window 
u7 = fig7.Name;                                                          % handle 
errorbar(mk, locsc-fitq, (1/sqrt(2))*ones(size(locsc)), '+'); grid    % plot with  
          error bars in  
          blue 
xlabel('quantum number m');                                             % x axis label 
ylabel('measured - fitted channel number');                            % y axis label                                                                                                
title('quadratic fit residuals');                                       % figure title 
xlim([min(mk)-0.1 max(mk)+0.1]);                                       % set x axis  
          limits                                                                              
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ylim([min(locsc-fitq)-1/sqrt(2)-0.1 max(locsc-fitq)+1/sqrt(2)+0.1]);  % set y axis  
          limits 
print('Fig7 quadratic fit residuals', '-dpng');                        % save figure 
          as png 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% chi squared for c2h2 
% linear 
chisqup = 0;                                                   % start chi squared sum at  
        0 
for np = 1:5;                                                  % loop over 5 values 
    doversigmasqup(np) = (resid1(np)*sqrt(2))^2;             % single value of chi  
        squared, error on maxloc is  
        1 
    chisqup = doversigmasqup(np) + chisqup;                  % linear chi squared 
end                                                            % end for loop 
disp('Residuals for linear fit are in variable resid1');     % display where residuals  
        held 

% quadratic 
chisquq = 0;                                                                                 % start chi squared  
         sum at 0 
for nq = 1:5;                                                                                % loop over 5 values 
    doversigmasquq(nq) = (resid2(nq)*sqrt(2))^2;                         % single value of chi 
         squared, error on  
         maxloc is 1 
    chisquq = doversigmasquq(nq) + chisquq;                                 % quadratic chi  
         squared 
end                                                                                           % end for loop 
disp('Residuals for quadratic fit are in variable resid2');  % display where  
         residuals held 
disp('Values in resid2 are smaller than those in resid1 therefore quadratic fit is 
used');          % tell user which fit  
         used 
disp('resid2 =');                                                                            % display resid2 
disp(resid2); 
% -------------------------------------------------------------------------------------------------------- 
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% -------------------------------------------------------------------------------------------------------- 
% Convert fit coefficients to energy 
% C 
kC = q(1)/cal(1);                                                       % convert  
          channel num- 
          ber to   
          wavenumber 
C = kC*6.626e-34*3e+8;                                                 % convert  
          wavenumber  
          to energy 
sigmaC = (6.626e-34*3e+8/cal(1))*sqrt(errq1^2 + (C*errcal1)^2);      % error on C 

% B 
kB = q(2)/cal(1);                                                       % convert  
          channel num- 
          ber to   
          wavenumber 
B = kB*6.626e-34*3e+8;                                                 % convert  
          wavenumber  
          to energy 
sigmaB = (6.626e-34*3e+8/cal(1))*sqrt(errq2^2 + (B*errcal1)^2);      % error on B 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% find moments of inertia 
I0 = ((6.626e-34)^2)/((B-C)*4*pi^2);           % ground state moment of inertia 
I1 = ((6.626e-34)^2)/((B+C)*4*pi^2); % excited state moment of inertia 
L0 = 2*sqrt(I0/(2*12*1.667e-27));              % estimate C-C unstretched bond length 
L1 = 2*sqrt(I1/(2*12*1.667e-27));              % estimate C-C stretched bond length 
compare0 = 120.3e-12 - L0;                     % compare L0 to known value 
compare1 = 120.3e-12 - L1;                     % compare L1 to known value 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% estimate errors on moments of inertia 
sigmaI0 = ((6.626e-34/(2*pi*(B-C)))^2)*sqrt(sigmaB^2 + sigmaC^2);   % error on I0 
sigmaI1 = ((6.626e-34/(2*pi*(B+C)))^2)*sqrt(sigmaB^2 + sigmaC^2);  % error on I1 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% calculate difference in moments of inertia 
deltaI = I1-I0; 
deltaL = L1-L0;     % amount of stretching 
% -------------------------------------------------------------------------------------------------------- 
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% -------------------------------------------------------------------------------------------------------- 
% consider accuracy of difference in moments of inertia 
sigmadeltaI = sqrt(sigmaI0^2 + sigmaI1^2);  
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% print results 
fprintf('Ground state moment of inertia I0 = %3.2e +/- %1.0e\n', I0, sigmaI0); 
fprintf('1st excited state state moment of inertia I1 = %3.2e +/- %1.0e\n', I1, sig-
maI1); 
fprintf('Difference in moments of inertia deltaI = %1.0e +/- %1.0e\n', deltaI, sig-
madeltaI); 
% -------------------------------------------------------------------------------------------------------- 

% -------------------------------------------------------------------------------------------------------- 
% Doppler broadening 
sigmaovermean = sqrt(1.381e-23*300/(18*1.661e-27*9e16)); 
sigma = sigmaovermean.*wavenum; 
% -------------------------------------------------------------------------------------------------------- 

The number of words in this document is 1481. 

This document was last saved on 7/3/2016 at 13:24.

!17


