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Abstract 
The first aim of the experiment was to determine the viscosity of two ideal gases; helium 
and argon, in a constant volume environment, through thin tube, and from this also 
determine the mean free paths and collision cross-sections.  The second aim was to 
measure the flow rate of each gas under a low pressure environment. 
 
The main results we obtained for helium were as follows; 
 
 
 
and for argon; 
 
 
 

Viscosity (η) = (3.0 ± 0.6)  10 5 Pas 
Pumping speed (S) = (8.0 ± 0.3)  10 4 m3s-1  

Viscosity (η) = (2.5 ± 0.5)  10 5 Pas 
Pumping speed (S) = (6.4 ± 0.2)  10 4 m3s-1 
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1. Introduction 
When fluids flow through a pipe, the way in which they flow is determined by many 
factors including the size of the molecules and a property of the fluid known as viscosity.  
There are two flow regimes known as laminar and turbulent flow.  These are illustrated by 
Figure 1 below.  In laminar flow the fluid flows smoothly in a parabolic profile due to 
friction (due to viscosity) with the pipe walls. 
 

 
While with turbulent flow, the motion of each layer (and on a molecular level) is far more 
random and chaotic.  As part of our investigation into laminar flow we estimated the mean 
free path and collision cross-section of each gas.  The mean free path of a gas is defined 
as the mean distance a gas molecule will travel after a collision (either with another 
molecule or the container).   The collision cross section is related to the mean free path as 
a gas molecule will have a probability of colliding with another molecule that depends on 
the area of the gas molecule.  The larger the collision cross section, the more likely a 
collision is to occur hence the lower the free mean path. 
 
 

2. Theory 
 
From the kinetic theory of gases the flow rate of a gas flowing in a pipe with one end at 
pressure  and the other at a lower pressure  is given by Poiseuille’s equation.  Where 

 is the volume of the pipe system,  is the radius of the tube and  is the length of the 
tube. 

  (1). 
 
It can be shown that by solving the differential Equation 1 by separation of variables, a 
linear relation can be derived as 
 

 (2) 
 
Since Equation 2 is a straight line and all the variables can be determined in the 
laboratory, the gradient of  against time will be equal to the gradient, hence 
viscosity can be determined.  Once the viscosity has been determined it is possible to 
calculate the mean free paths of each gas respectively.  The equation relating viscosity 
with the mean free path of a gas is given as 

Fig 1.   
Schematic 
diagram for 
laminar 
flow [1] 
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 (3) 
 

where  is the number density which is the number gas molecules per ,  is the mass 
of an individual gas atom and  is the mean free path.  Although  is not known explicitly 
it is possible to estimate it using our experimental values with the ideal gas equation given 
as; 

 (4) 
 

where  is the number of moles of the gas,  is the Boltzmann constant converted when 
dealing with molar quantities and is the temperature of the gas.   
 
Once  has been determined the number density can be calculated using the following 
relation of;  

 (5) 
 

where  is the density of the gas and  is Avogadro’s number (defined as the number of 
carbon 12 atoms in 12  of Carbon-12). 
 
Another flow regime which occurs at low pressures is molecular flow.  Because of this 
low pressure, the mean free path of the gas atoms is larger than that of laminar flow, so 
collisions with the tube walls are more common than those with other gas atoms. 
 

 (6) 
 
where  is the limiting residual pressure which arises from leaks and other minor sources 
which mean that the pressure in the pipe system will not reach zero.  Again by solving the 
differential equation, the pumping speed S can be found. 
Hence the following linear relationship is derived,  

. 
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3. Experimental Method  
 

The main apparatus given to us is shown in Figure 2 below.  

Fig 2.  Diagram of the apparatus used for measuring gas flow.    

 

We were also given 2 tubes.  The longer was of length (3.00  0.05) cm (giving a 
percentage uncertainty of 1.67%) and diameter (0.200  0.005) mm (giving a percentage 
uncertainty of 2.5%).  The measurements for length were made using calipers and those 
for diameter were made using a Vernier scale on a travelling microscope.  The 
uncertainties were determined to be half the smallest reading on the particular scale.  The 
dimensions of the shorter tube were not included in the calculations for molecular flow 
therefore they were not measured. 

 

From the theoretical results established in the section 2 we knew a linear relationship with 
variables which were known.  However we had to determine the volume of the pipe 
system as this was not known.  To do this we were given a tube of known volume, and 
connecting it to the pipe system and evacuating the pipe system while the tube was kept 
isolated from the system.  
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Then the valve was opened allowing the air in the tube to diffuse through the system.  To 
determine the volume we assumed that the air behaved as an ideal gas.  Hence using the 
gas law  

  (7) 
where  are known, the volume was estimated. 
 
3.1 Experimental procedure 
 
To investigate laminar flow, a relatively long tube was used.  After evacuating the entire 
system and then filling it with the gas with which we were using for experimenting (either 
helium or argon).  When the valve was opened, the gas flowed through the U bend 
causing a drop in pressure which was measured with respect to time for a time of 5 
minutes in 10 second intervals.  Care was taken to try and avoid parallax error, so 
measurements were made at eye-level. 
 
For molecular flow low pressures were required, so to make sure that the only gas present 
in the pipes was the gas we were measuring, the entire system was evacuated and then the 
gas was pumped in.  A shorter tube compared with that used in laminar flow was used 
during the experiment.  The whole system was then evacuated again until it reached the 
appropriate pressure (approximately 10mbar) according to the pressure gauge.  Taking an 
initial reading on the McLeod Gauge and then opening the valve allowing the gas 
molecules to flow through the system.  Measurements were made every minute until the 
pressure was measured to be the same after a consecutive minute.  This value was also the 
residual pressure. 

4. Results 
 
Presented below are graphs for the laminar and molecular flows of each of helium and  
argon. They were produced using the Matlab Least Squares Fit package [2].  
 
 
 

 

 

Fig 3. Pipe system as used 
during the experiment. 
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Fig 4.  The final graph used in the calculations for laminar flow of helium.  Data points were 
removed until the minimum value for the reduced-χ2 (2.51) was obtained.  This was done since 
Equation 2 for laminar flow was only valid for the linear part of the graph.  At t=160s the data 
points started to curve away from the straight line, meaning the turbulent flow was taking 
place.  From the value for the reduced-χ2 we can say that the goodness of fit is close to the 
accepted value (0.5<χ2

red<2). 

Fig 5.  Similar to Fig 4, but for argon, rather than helium.  In this instance, removing data 
points did not improve the reduced-χ2 therefore all points were kept.  This was because, for 
argon more so than helium, the data points after at time of about 160s did not deviate as 
much from the line of best fit.  Also, the error bars at later times, still passed through the 
line, whereas with helium they did not.  The reduced-χ2 for this graph was 3.46 (to 2 
decimal places) therefore a linear fit was not so appropriate for this data. 
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Fig 7.  Similar to Fig 6 but for argon.  This time it took a longer time to reach the limiting 
residual pressure and the error bars were closer to the line of best fit.  This gave a better 
goodness of fit with a reduced-χ2 of 2.03 (close to the definition of a good fit with a reduced-χ2 
of less than 2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6.  The final graph for the molecular flow of helium.  A calculation for the reduced-χ2 
gave 15.5, suggesting a very bad fit.  This can be seen from the final error bar being far from 
the line of best fit.  However, the data point could not be removed as there was no physical 
interpretation as to why this would be appropriate.  
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Using the gradients (and intercepts in the case of molecular flow) of these graphs from the 
Matlab package the corresponding viscosities and pumping speeds were calculated.  The 
final formulas used for the errors on viscosity and pumping speed respectively were; 
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where m is the particular gradient. 

The main factor contributing to the uncertainty in viscosity was the fractional uncertainty 
in the radius (twice the fractional uncertainty in the diameter) and this lead to a percentage 
uncertainty of 20% (for both helium and argon) in the viscosity.  On the other hand, the 
biggest contributor to the to the pumping speed of helium was the intercept of the graph 
(percentage uncertainty of 3.55%), leading to a final percentage uncertainty of 3.67% in 
the pumping speed.  For argon the biggest contributor was the gradient of the graph (with 
percentage uncertainty 2.60%), giving a final pumping speed percentage uncertainty 
3.02%. 

As the lab script [3] only specified to estimate the mean free paths and collision cross-
section the rest of the variables in Equations 3,4 and 5 were treated as constants. This 
meant that the fractional uncertainties in viscosities were the same as those for mean free 
path and collision cross-section. 

The fractional uncertainty in the Reynolds number could be calculated through combining 
the fractional errors in radius and viscosity in quadrature.  This gave percentage 
uncertainties of 20.7% in Reynolds number for both helium and argon.  

 
 
5. Discussion 
 
After analysing the data from our experimental results, we have found that the viscosity of 
helium is greater than that of argon, which is in disagreement with accepted values which 
suggest the opposite.  This also means that the calculated mean free path and collision 
cross section of helium are also significantly larger than the true value.  A reason for such 
discrepancies is due to the high level of fractional uncertainty in measuring the radius of 
the tube for laminar flow and that there are a 4th power involved in the equations causing a 
larger uncertainty in the viscosity.  Additionally, the true volume of the pipe system was 
not measured directly and the value of the volume used is an average from other groups 
conducting the experiment.  Since each apparatus was different, this could potentially 
have meant that the volume of our system could vary significantly compared with the 
volume we have used in our calculations.  However we assumed that this was the true 
value of our system because it would have been difficult to estimate the true error from 
data from other groups.  Having said this, the uncertainty on our volume was determined 
in the usual way through partial differentiation and combining in quadrature. This lead to 
the equation; 
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Table 1.  Summary of all the experimental results. 
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The percentage uncertainty in V0 was 1.2%.  
 

6. Summary 
 
The experimental values of viscosity, mean free path, collision cross-section, Reynolds 
number and pumping speed are presented below in Table 1. 
 
 Helium Argon 
Viscosity ) (3.0  Pas (2.5±0.3)  Pas 
Pumping speed (S) (8.0   (6.4  
Collision Cross-section (  (9  2)  10-20 m2 (3.5  0.7)  10-20 m2 
Mean Free Path (  (4.4  0.9)  10-8 m (1.2  0.2)  10-8 m 
Reynolds Number (R) (1.4  0.3)  103  (5  1)  103 m 

 

 

All uncertainty values in Table 1 are quoted to 1 significant figure and the value is then 
quoted to the appropriate significant figure following this. 

7. References 

 [1] http://www.omega.com/techref/flowcontrol.html 15:23 10/11/2014 
   

[2] Matlab Least Squares Fit, lsfr26.m available from Teachweb, 
http://teachweb.ph.man.ac.uk/. 

[3] Lab script for First year lab experiment on gas flow through narrow tubes, 
I. Grant, pp. 2 

 

The number of words in this document is 1719. 

 

This document was last saved on 12/11/2014 at 23:07


