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Abstract 

Through measurement of the axial temperature of a sample of epoxy resin using a ther-

mocouple connected to a mechanical graph plotter with two separate methods of a sudden 

change in temperature and periodic changes, the thermal diffusivity of the sample was 

calculated.  The result for the thermal diffusivity of the sample was 

0.0900 ± 0.0003 mm
2
s

-1
.  The main contributors to the error in thermal diffusivity were 

temperature measurements. 
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Fig 1.  A simple graph of surface temperature against time for Case A.  
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Fig 2.  A simple graph of axial temperature against time for Case A.  

1. Introduction 

The thermal diffusivity of a material is related to the heat flow through it.  In this experi-

ment, the material used was an epoxy resin (plastic) sample.  The sample was an isotropic 

(same in all directions) [1] uniform solid in the form of a cylinder, with a thermocouple 

inside to measure its axial temperature.  When the surface temperature of the sample is 

changed, the axial temperature changes as a result of the sample trying to attain thermal 

equilibrium with its surroundings.  Two methods can be used to measure the thermal dif-

fusivity of the sample: the first being to suddenly change its surface temperature and the 

other being to periodically change its surface temperature.  

 

2. Theory 

Case A - sudden change in surface temperature 

When the surface temperature θ(a, t) (where a is the radius of the cylinder and t is the 

time since changing the surface temperature from a lower temperature θ1 to a higher tem-

perature θ2 of the sample is suddenly changed (as shown in Figure 1), the axial tempera-

ture θ(0, t) will exponentially approach θ2 after the transients effects have passed (as 

shown in Figure 2).   
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Fig 3.  A simple graph of surface temperature against time for case B.  

 

This leads to the proportionality; 
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where Δθ = θ2 - θ1, D is the thermal diffusivity and λ1 is a dimensionless constant with 

value of 2.405.  Plotting a graph of ln(θ-θ1) against t gives a gradient, m, of; 
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Equation 2 can be rearranged to give a value for D.  For a sudden change in the sample’s 

surface temperature from θ2 to θ1, the θ2 in Equation 1 is changed to θ1. 

 

Case B - periodic change in surface temperature 

When θ(a, t) is periodically changed between θ2 and θ1 (as shown in Figure 3), a heat 

wave is generated.  This heat wave is damped between the surface and centre of the sam-

ple.  This wave can be represented as a Fourier series.  For short enough periods, T, the 

Fourier coefficients for n greater than 1 will be relatively small, leaving sinusoidal behav-

iour (as shown in Figure 4). 
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Fig 4.  A simple graph of axial temperature against time for Case B.  The axial temperature doesn’t reach 

θ2 and θ1. 

 

 

 

 

 

 

 

The peak-to-peak, B, of the sinusoidal wave in Figure 4 is related to D through Equation 

3; 
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where M0 is the Kelvin function. 

There is a phase lag, ϕ, between changing θ(a, t) and the peaking of  θ(0, t), which is re-

lated to D through Equation 4; 

)
2

(arg 0
TD

aM


   

 

3. Experimental procedure and set-up 

Shown in Figure 5 is an apparatus diagram which was used for both cases A and B. 
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Fig 5.  A simple diagram of the apparatus used during the experiment.  
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A beaker full of ice water was used to give a θ1 of 0
0
C.  In the same way, a beaker of boil-

ing water with the heating element on full power was used to give a θ2 of 100
0
C. A stirrer 

was used to keep θ(a, t) at 0
0
C and a thermometer to check that the water was at the cor-

rect temperature.  Also, the resin had to be completely submerged in the water to ensure 

an accurate θ(a, t).  A thermocouple (digital thermometer) was connected to the inside of 

the resin, and therefore measured θ(0, t).  This thermocouple was connected to a graph 

plotter that outputted the exponential curve for case A and sinusoidal curve for case B.  A 

stopwatch was needed to measure t for case A and T for case B.  

4. Results 

Case-A  

Using Equation 2, a straight line fit using the Matlab Least Squares Fit package was pro-

duced for the resin being immersed in boiling to freezing water and again for the opposite 

situation [2].  
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The reduced-χ
2
 obtained by fitting the data from Figure 6 was 3235 which is an extremely 

poor fit.  There are large uncertainties on the initial points as well as a final point which 

does not lie close to the fitted line.  However, the majority of the central data points do lie 

on the fitted line, suggesting that a linear fit is suitable but that errors on the individual 

points must be revised.  

 

 

Fig 7.  Same fit parameters as Figure 6 but with more data points.  The m value was -0.00584 ± 0.00002 s
-1

. 
 

Fig 6.  A plot of 
𝑙𝑛(𝜃−𝜃1) 

𝛥𝜃
 on y axis against t on x axis. There were two fitted variables which were the 

gradient and the y intercept. The m value was -0.00708 ± 0.00002 s
-1

. 
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The reduced-χ
2
 obtained by fitting the data from Figure 7 was 6074, which comparing 

with the reduced-χ
2
 from Figure 6, suggests an even poorer fit.  Many of the points, par-

ticularly at the beginning, have high levels of error and have the largest residuals hence 

affecting the value of the reduced-χ
2
. 

 

Equation 2 allowed D to be calculated.  Errors on D were propagated in quadrature in-

volving partial derivatives.  The dominant error which arose from this error analysis was 

in the subtraction of θ-θ1. 

 

The values obtained for D with their associated errors are summarized in Table 1.  A re-

peat for each transition from hot to cold temperatures was made.  However, when a repeat 

was made for the transition from hot to cold, the data produced an exponential curve 

which made a linear fit unsuitable, hence this data was discarded. 

 

Case-B 

 

With case B, two estimates of D were found using the same data but by looking at two 

different properties of the produced graphs.  Data for periods of 2, 3, 4, 5 and 9 minutes 

respectively were taken.  These data produced sinusoidal curves, after initial effects dis-

appeared.  Measurements of the peak to peak values from several periods were made, 

from which a weighted average was taken.  By rearranging Equation 3 for M0, an estimate 

for its argument could be determined by data provided from a table of the Kelvin function 

[3].  The data from the table were used to plot the Kelvin function as shown in Figure 8. 
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Each of the points in Figure 8 have been connected by linear interpolation, this made es-

timating error due to interpolation difficult. Error in M0 was obtained using quadrature 

from Equation 4, and M0 + 𝜎 and M0 – 𝜎 were plotted in order to obtain a range for the 

argument.  An example of this is shown in Figure 9.  The error of the argument was there-

fore assumed to be twice the largest difference between M0 and M0 + 𝜎 or M0 and M0 – 𝜎. 

An estimate on the uncertainty of T was made based on contributions from human reac-

tion time and the time taken to move the resin to water of a different temperature.  Thus 

we obtained an uncertainty of σT  = ±3𝑠. Once these uncertainties were estimated, an esti-

mate of the uncertainty of D could be made through quadrature, with results shown in Ta-

ble 2. Figures 10 to 13 show graphs for each T. 

 

 

Fig 8. The Kelvin function. 

Fig 8. The Kelvin function. 
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In Figure 10, a smooth sinusoidal pattern is clearly shown, with the maxima and minima  

similar for successive cycles.  Similar graphs were observed for T of 4 and 5 minutes.   

 

 

 

 

 

 

 

 

 

 

 

Fig 10. Graph for case B with T = 3 minutes. Graphing machine speed at 1 cm/min. Further periods are 

omitted due to length of the graph. 

Fig 9. Kelvin function for a period of 4 minutes. Central estimate is the value obtained by M0 and the 

lower and upper estimates are from M0 – 𝜎 and M0 + 𝜎 respectively.  
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A T of 2 minutes produced an unstable sine curve, as shown in Figure 12, and this T was 

deemed too short.  In Figure 12 there is visible irregularity between the maxima and min-

ima of each cycle. 

 

 

 

 

With Figure 13, although the maxima and minima were similar between cycles, there was 

significant curving when approaching maxima or minima, which produced a non-

sinusoidal curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12. Graph for case B with T = 2 minutes. Graphing machine speed at 1 cm/min. 

Fig 11. Graph for case B with T = 4 minutes. Graphing machine speed at 1 cm/min. Further periods are 

omitted due to length of the graph. 
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Despite the non-sinusoidal nature of Figure 13, an estimate of D was made using the peak 

to peak values from the data in order to provide a comparison between the values obtained 

from data using other periods.  An estimate using the phase lag for this period was not 

made due to the non-sinusoidal nature. 

 

As for estimating D using phase lag, it is unclear how the argument of M0 behaves, there-

fore the method for calculating M0 from peak to peak could not be used.  Instead, calcu-

lated values for ϕ were compared with the table for M0, giving an inequality in D.  The 

average of the two sides of the inequality was taken as the D value, with the uncertainty 

quoted as half the difference between the two extremes of the inequality.  The uncertain-

ties in D values from this method were high as it was not possible to interpolate the argu-

ment of M0 graphically.  The results for this method are shown in Table 3. 

 

Transition D (mm2s−1) 

Boiling to freezing 0.0929 ± 0.0006 

Freezing to boiling 0.077 ± 0.001 

Freezing to boiling  

repeat two 
0.074 ± 0.001 

 

 

 

 

Period T(minutes) D(mm2s−1) 

3 0.085 ± 0.002 

4 0.089 ± 0.001 

5 0.093 ± 0.001 

9 0.093 ± 0.001 

 

 

Table 1.  Summary of main results for case A. 

Fig 13. Graph for case B with T = 9 minutes. Graphing machine speed at 1 cm/min. 

Table 2.  Summary of main results from case B for an estimate of D using peak to peak data. 
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Period T (Minutes) D (mm2s−1) 

3 0.030 ± 0.004 

4 0.03 ± 0.05 

5 0.33 ± 0.07 

 

 

 

Using these values, weighted averages were taken in order to produce an average value 

for each experiment and an overall average, these results are summarized in Table 4. 

Experiment Average D(mm2s−1) 

A 0.0878 ± 0.0005 

B (peak to peak) 0.0920 ± 0.0005 

B (phase lag) 0.06 ± 0.04 

A and B (without phase 

lag) 
0.0896 ± 0.0005 

A and B 0.0900 ± 0.0003 

 

 

 

 

5. Discussion  

 

The results have uncertainties of order of 1-2%.  The confidence in these uncertainties is 

low. Firstly, considering the factors in uncertainty in case A, there was uncertainty in the 

m, temperature and a.  Due to the precision in measuring a using calipers, this uncertainty 

is insignificant. However, the uncertainty in m depends explicitly on the uncertainty of the 

temperature, which itself arises from the thermocouple.  The large reduced-χ
2
 for both 

transitions suggests that the fitted line was poor and that the uncertainty in the tempera-

ture is much larger than estimated. 

This larger uncertainty in temperature also contributes to the uncertainty in case B when 

using peak to peak data, due to explicit dependence on uncertainty in temperature.  It 

should be noted, however, that weighted averages from both cases agree to the same order 

of magnitude and are within 1 to 2 standard deviations of each other. Other major con-

tributors to uncertainty for values from peak to peak data were the uncertainty in the ar-

gument of M0 and T.  Uncertainty from the argument was approximately 1-1.5% for each 

T but an uncertainty of 6.25% was calculated for T = 3 minutes. The percentage uncer-

tainty in T also increases as T decreases with a maximum uncertainty of 1.7% for T of 3 

Table 4.  Weighted averages for each case and combined. 

Table 3.  Summary of main results from case B for an estimate of D using phase lag data. 
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minutes.  If further time were available, more cycles would be measured in order to esti-

mate a more consistent value for peak to peak and therefore consistent values for uncer-

tainty of the argument.  Additional repeats for case A would provide an additional value 

for the transition from boiling to freezing, since a repeat produced unexpected exponential 

behavior. 

 

6. Conclusion 

 

Through the use of 3 methods, several values of D were obtained. A weighted average 

from case A and case B (peak to peak) produced an estimated D of 

0.0900 ± 0.0003 mm
2
s

-1
. The conclusions reached from experimental results were that the 

value of D is of the order 1 × 10−8 m2s−1 and that the main contribution to the error in D 

arose from uncertainty in temperature. 

References   

[1]  Zemansky, M.W. & Dittman, R.H.  Heat and Thermodynamics, McGraw-

Hill, 7
th

 Ed, pp. 96. 

[2] Matlab Least Squares Fit, lsfr26.m available from Teachweb, 

http://teachweb.ph.man.ac.uk/. 

[3] Abramowitz, M. & Stegun, I.A. Handbook of Mathematical Functions for 

Science Students, Dover, 10
th

 Ed, pp.432 

 

The number of words in this document is 1888. 

 

This document was last saved on 23/11/2015 at 13:46 

http://teachweb.ph.man.ac.uk/

